US009229713B2

a2 United States Patent

Hansen et al.

US 9,229,713 B2
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PROCESSOR FOR EXECUTING WIDE (58) Field of Classification Search
OPERAND OPERATIONS USING A CONTROL None
REGISTER AND A RESULTS REGISTER See application file for complete search history.
(75) Inventors: Craig Hansen, Los Altos, CA (US); (56) References Cited
John Moussouris, Palo Alto, CA (US);
Alexia Massalin, San Jose, CA (US) U.S. PATENT DOCUMENTS
(73) Assignee: MicroUnity Systems Engineering, Inc., g:g%:é;g ﬁ S;}g;}‘ é;:;,mkle
Santa Clara, CA (US) .
(Continued)
(*) Notice: Subject. to any dlsclalmer,. the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 658 days. EP 0212571 A2 3/1987
| EP 0651514 A2 5/1995
(21) Appl. No.: 13/591,492 (Continued)
(22) Filed: Aug. 22,2012 OTHER PUBLICATIONS
Welch “A fixed-point fast Fourier transform error analysis,” IEEE
(65) Prior Publication Data Transactions on Audio and Electroacoustics, vol. AU-17, No. 2, Jun.
1969, pp. 151-157.
US 2013/0173888 Al Jul. 4, 2013 .
(Continued)
Related U.S. Application Data
. . o Primary Examiner — Scott Sun
(63) Continuation of application No. 11/346,213, .ﬁleq on (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Feb. 3, 2006, now Pat. No. 8,289,335, which is a Stockton LLP
continuation of application No. 10/616,303, filed on
Jul. 10,2003, now Pat. No. 7,301,541, application No. (57) ABSTRACT
(Continued) A programmable processor and method for improving the
performance of processors by expanding at least two source
(51) Int.CL operands, or a source and a result operand, to a width greater
GO6F 9/30 (2006.01) than the width of either the general purpose register or the
GOG6F 9/38 (2006.01) data path width. The present invention provides operands
(Continued) which are substantially larger than the data path width of the
processor by using the contents of a general purpose register
(52) US.ClL to specify a memory address at which a plurality of data path
P ry p Y p
CPCcccceee. GO6F 9/30 (2013.01); GO6F 9/3004 widths of data can be read or written, as well as the size and

(2013.01); GO6F 9/30007 (2013.01); GO6F
9/30014 (2013.01); GOGF 9/3016 (2013.01);
GO6F 9/30018 (2013.01); GO6F 9/30029
(2013.01); GO6F 9/30032 (2013.01); GO6F
9/30036 (2013.01); GO6F 9/30043 (2013.01);

(Continued)

Definition

def mulfsia 5,V wa,) as.
Dl - ((usdevsize- 1o Va1 11.) * VS8 sien 1o S iz)
of

el WideConvooEXiracKop, b,y

shape of the operand. In addition, several instructions and
apparatus for implementing these instructions are described
which obtain performance advantages if the operands are not
limited to the width and accessible number of general purpose
registers.

22 Claims, 509 Drawing Sheets
endif

gsize « sgsize
Igsize « log(gsize)

d + RegRead(rd, 64) case op of
© & RegRead(re, 64) W.CONVOLVEX.B:
b - RegRead(rb, 128) order < B
case bp_g of W.CONVOLVE.X.L:
order L
endcase

¢s « signed
ds «signed ~m
28 e signedormern
zsize gsize*(x+1)
h e (2*gsize) + Idmsize - Igsize
spos ¢ (bg.0) and 2*gsize-1)
dpos « {0 | b23,1g) and (zsize-1}
1 spos
sfsize <= (01 b31..24) and (zsize-1)
tfsize « (sfsize =) or ((sfsize+dpos) > zsize) ? zsize-dpos : sfsize
fsize (tfsize + spos > h1) 7 bvd - spos : tfsize
if (1.9 = Z) and nat zs then
md«F
else
md e big.p
endif
mzero «= bys_ g4
mpos ¢ bg3_32
00 « mpos || 03
OX 4= ODlcwsize-1. Igsize
0Y « O0kcmsige-t. Jewsize
2z &= (~mzero) || 1
X ¢ 2idwsize-1. gsive
2y < Ziidmsize-). Mwsize

US 9,229,713 B2

Page 2

(60)

(1)

(52)

(56)

Related U.S. Application Data

13/591,492, which is a continuation-in-part of appli-
cation No. 09/922,319, filed on Aug. 2, 2001, now Pat.
No. 6,725,356, which is a continuation of application
No. 09/382,402, filed on Aug. 24, 1999, now Pat. No.
6,295,599, and a continuation-in-part of application
No. 09/169,963, filed on Oct. 13, 1998, now Pat. No.
6,006,318.

Provisional application No. 60/394,665, filed on Jul.
10, 2002, provisional application No. 60/097,635,
filed on Aug. 24, 1998.

Int. CL.
GO6F 9/35 (2006.01)
GO6F 9/44 (2006.01)
GO6F 9/455 (2006.01)
GO6F 12/02 (2006.01)
GO6F 17/50 (2006.01)
HO3M 13/15 (2006.01)
HO3M 13/41 (2006.01)
GO3F 1/36 (2012.01)
U.S. CL
CPC GO6F9/30054 (2013.01); GOGF 9/30101
(2013.01); GOGF 9/30109 (2013.01); GO6F
9/30112 (2013.01); GO6F 9/30145 (2013.01);
GO6F 9/30167 (2013.01); GOGF 9/35
(2013.01); GO6F 9/383 (2013.01); GO6F
9/3851 (2013.01); GOGF 9/3861 (2013.01);
GOG6F 9/3885 (2013.01); GO6F 9/4425
(2013.01); GOGF 9/45533 (2013.01); GO6F
12/02 (2013.01); GO6F 17/5068 (2013.01);
GO6F 17/5072 (2013.01); GO6F 17/5081
(2013.01); HO3M 13/158 (2013.01); HO3M
13/4169 (2013.01); GO3F 1/36 (2013.01);
GOG6F 2217/12 (2013.01); YO2B 60/1225
(2013.01); Y02B 60/146 (2013.01)
References Cited
U.S. PATENT DOCUMENTS
4,251,875 A 2/1981 Marver et al.
4,353,119 A 10/1982 Daniel et al.
4,393,468 A 7/1983 New
4,658,349 A 4/1987 Tabata et al.
4,658,908 A 4/1987 Hannukainen
4,785,393 A 11/1988 Chu et al.
4,823,259 A 4/1989 Aichelmann et al.
4,930,106 A 5/1990 Danilenko et al.
5,031,135 A 7/1991 Patel et al.
5,170,399 A 12/1992 Cameron et al.
5,185,861 A 2/1993 Valencia
5,280,598 A 1/1994 Osaki et al.
5,283,886 A 2/1994 Nishii et al.
5325493 A 6/1994 Herrell et al.
5,333,280 A 7/1994 Ishikawa et al.
5,375,215 A 12/1994 Hanawa et al.
5426379 A 6/1995 Trimberger
5,430,556 A 7/1995 Tto
5471,593 A 11/1995 Branigin
5,481,686 A 1/1996 Dockser
5,487,024 A 1/1996 Girardeau, JIr.
5,509,137 A 4/1996 Itomitsu et al.
5,535,225 A 7/1996 Mayhew et al.
5,550,988 A 8/1996 Sarangdhar et al.
5,551,005 A 8/1996 Sarangdhar et al.
5,574,939 A 11/1996 Keckler et al.
5,579,253 A 11/1996 Lee et al.
5,598,362 A 1/1997 Adelman et al.
5,600,814 A 2/1997 Gahan et al.

5,604,864
5,636,363
5,646,626
5,669,012
5,671,170
5,675,526
5,717,946
5,721,892
5,740,093
5,742,840
5,745,729
5,745,778
5,752,001
5,752,264
5,765,216
5,768,546
5,778,412
5,799,165
5,802,336
5,826,079
5,826,081
5,835,744
5,835,782
5,835,968
5,872,972
5,889,983
5,933,627
5,933,650
5,935,240
5,940,859
5,991,531
5,999,959
6,006,299
6,038,675
6,041,404
6,058,408
6,061,780
6,105,053
6,131,145
6,134,635
6,141,384
6,141,675
6,170,051
6,211,892
6,212,618
6,237,016
6,243,803
6,260,135
6,263,428
6,266,758
6,269,390
6,292,815
6,295,599
6,317,824
6,351,801
6,370,559
6,377,970
6,378,060
6,385,634
6,408,325
6,418,529
6,426,746
6,438,660
6,453,368
6,463,525
6,470,370
6,516,406
6,567,908
6,631,389
6,633,897
6,725,356
6,766,515
6,804,766
2013/0283019

2/1997
6/1997
7/1997
9/1997
9/1997
10/1997
2/1998
2/1998
4/1998
4/1998
4/1998
4/1998
5/1998
5/1998
6/1998
6/1998
7/1998
8/1998
9/1998
10/1998
10/1998
11/1998
11/1998
11/1998
2/1999
3/1999
8/1999
8/1999
8/1999
8/1999
11/1999
12/1999
12/1999
3/2000
3/2000
5/2000
5/2000
8/2000
10/2000
10/2000
10/2000
10/2000
1/2001
4/2001
4/2001
5/2001
6/2001
7/2001
7/2001
7/2001
7/2001
9/2001
9/2001
11/2001
2/2002
4/2002
4/2002
4/2002
5/2002
6/2002
7/2002
7/2002
8/2002
9/2002
10/2002
10/2002
2/2003
5/2003
10/2003
10/2003
4/2004
7/2004
Bl 10/2004
Al* 10/2013

P 3 2 3 B B B 2 B B B B B B B B B B B B B D

Noda
Bourekas et al.
Willis

Shimizu et al.
Markstein et al.
Peleg et al.
Satou et al.
Peleg et al.
Sharangpani
Hansen et al.
Greenley et al.
Alfieri

Dulong

Blake et al.
Weng et al.
Kwon

Gafken

Favor et al.
Peleg et al.
Boland et al.
Zolnowsky
Tran et al.

Lin et al.
Mabhalingaiah et al.
Boland et al.
Mittal et al.
Parady

van Hook et al.
Mennemeier et al.
Bistry et al.
Song et al.
Weng et al.
Wang et al.
Gabzdyl et al.
Roussel et al.
Fischer et al.
Shippy et al.
Kimmel et al.
Matsubara et al.
Reams

Wittig et al.
Slavenburg et al.
Dowling

Huff et al.
Roussel
Fischer et al.
Abdallah et al.
Yoshida
Nonomura et al.
Van Hook et al.
Boland
Abdallah et al.
Hansen et al.
Thakkar et al.
Christie et al.
Hoffman
Abdallah et al.
Hansen et al.
Peleg et al.
Shaylor
Roussel

Hsieh et al.
Reams
Yamamoto
Prabhu

Fischer et al.
Peleg et al.
Furuhashi

Lin et al.
Browning et al.
Hansen et al.
Bitar et al.

Noel et al.
Ould-Ahmed-Vall
et al.

............................. 712/225

US 9,229,713 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS
FOREIGN PATENT DOCUMENTS

EP 0800280 A1 10/1997
EP 1024603 A2 8/2000
EP 1102161 5/2001
JP 03-098145 A 4/1991
JP 06-149723 A 5/1994
JP 07-114496 A 5/1995
WO WO000/23875 Al 4/2000
OTHER PUBLICATIONS

Summons to Attend Oral Proceedings for European Patent Office
Application EP10191073 dated Dec. 4, 2012.

Extended Search Report for European Patent Office Application
EP10191073 dated Jan. 17, 2011.

Final Office Action for U.S. App. No. 13/584,235 (Sep. 9, 2013) 38
pages.

Office Action in inter partes Reexamination 95/000,100 (May 3,
2006).

Office Action in inter partes Reexamination 95/000,100 (Mar. 19,
2009).

Right of Appeal Notice (37 CFR 1.953) in inter partes Reexamination
95/000,100 (Jul. 11, 2009).

Gwennap “UltraSPARC Adds Multimedia Instructions,” Micropro-
cessor Report, vol. 8, No. 6, pp. 1-3 (Dec. 5, 1994).

Hansen Architecture of a Broadband Mediaprocessor (1996) Pro-
ceedings of Compcon. New York, IEEE Computer Science, pp. 334-
340 (1996).

Hansen “MicroUnity’s MediaProcessor Architecture” IEEE Micro
archive 16: 34-41 (Aug. 1996).

Hendrix “Viterbi Decoding Techniques in the TMS320C54x Fam-
ily,” Texas Instruments, (Jan. 2002).

Lee “High-speed VLSI architecture for parallel Reed-Solomon
decoder,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 11:288-294 (Apr. 2003).

Lee et al. “An efficient recursive cell architecture of modified
Euclid’s algorithm for decoding Reed-Solomon codes,” IEEE Trans-
actions on Consumer Electronics 48:845-849 (Nov. 2002).
Leijten-Nowak et al. “An FPGA architecture with enhanced datapath
functionality,” Proceedings of the 2003 ACM/SIGDA eleventh inter-
national symposium on Field Programmable Gate Arrays pp. 195-
204 (Feb. 2003).

Rice “Multiprecision Division on an 8-bit Processor”, Proceedings of
the 13th IEEE Symposium on Computer Arithmetic, pp. 74-81 (Jul.
1997).

Sarwate et al. “High-speed architectures for Reed-Solomon decod-
ers,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 9:641-655 (Oct. 2001).

Non-Final Office Action for U.S. Appl. No. 13/584,235 (Jan. 15,
2013).

* cited by examiner

US 9,229,713 B2

Sheet 1 of 509

Jan. 5§, 2016

U.S. Patent

- o o 0

-

1 Ol4 { =t 11 L..f
]
m AL ol za1 ||\ 191 el
Asopunioq 6ril 7 r4d; 44! 3
iy 9! Spi 124! £h!
9€1 [y el £€1 zs!
J K rr ﬁbu:. o S L2
| [ommllomm} |21 2 MM | 9 le _o@n o
soamag || 4 49 i + .
51
o/1 S
/1 5517
0Z1 P51~
I]
; 25—
i 151~ il
t i
_ Kﬂ AR
1 LoNDNIqLY 1
v — o] i)
Aiousayy 821 -, sz fﬂ 921 ezl |
94307 I+ ananp—3 ananp—3 anant)—3 ananp)—3
A10puodas| | 4| so0) _.J!|4L £zt NN:_J|L R:—I..Iﬂ_
N~ il soyup|es| Aiowap |ayoiy pup 34on) fL
6l 1 :
1| "8 2
Lrowapy
wiow 7 suj|| o1 cor L Laat) eor L) 601} | 101
P gl 91l uauaotﬂ anany) -y ¢l _m:m:QH“_ o uago..wv_
4 N gor) L | o) 0t 501 }

U.S. Patent Jan. 5,2016 Sheet 2 of 509 US 9,229,713 B2

0rdsog =m "C](728*64/size}* D128

mfrc (128464 /size)
511

'
N

% 127

N3 NBN

rb(128)

NAN AN \\\1 NAVNANS
SRS SRR NN

N RN

N
AN

NN
ol
Q

128 rd(128) 0

FiG. 2

U.S. Patent Jan. 5,2016 Sheet 3 of 509 US 9,229,713 B2

mfrcj(128+64 /size)
WIML KV THICIFIE[oICIBlAl Ly xlwlv lult [s] - Iglplo]nlm]/ [« ll
127/ rb(128) | o
h gl fleldlc]pbla)

+) + + +
Nh+Jgt+ff+8e+xd+ictpbtia Kh+Gg+Cr+yetudtqctmbtia

7 1 0
Mh+ig+Er+Ae+wdtsctobtka rd(128) Lh+Hg+Df+ze+vd+rc+nbtjo

FIG. 3

US 9,229,713 B2

Sheet 4 of 509

Jan. 5, 2016

U.S. Patent

v OId
mvw 3 444 FIN 24
9p 222N
| Shb boe
X X
N\oss _o__uu 1 9|l 9P gss
— —— IJ L J e e
557 A
29
7597 /]
\ 95 hJ 19%
)
7S~
£
AT Iy
{ 4 1G9~ /
uon 04419y B
67 [o 2]
33
¥1 482t ﬁ/{% 9zh E-tezr
ananp-3 = - fenanD =3 te— anan) -3 j+— ananp—3
_I»IIL Rt_l.ll._l_ Nmi_J..||.l_ 14
| AI0WBN |
S
7 7 LY
Bl sis || vor L) cir|| cor L) LGl 4] || 0r U 60| | |10%
i 2nanH—y b Hananp -y 14 oamao..«w oly anang -y
gor) L0% 905 604

U.S. Patent Jan. 5,2016 Sheet 5 of 509 US 9,229,713 B2

Q specifier=address+(size/2)+(width/2)

4

| depth = 4 bytes)
—

<__ﬁ/idth = 16 byfes]. {?I'Ze = depth x width = 64 bytes]

address is dligned to size (64 bytes),
so low—order & bits cre zero

oddress ~ |0000000000000000000000600000G0a00aaaa | 000000

size/2 | 000000000000000000000000000000000 |100000 |

width/2 |000000000000000000000000000000000 |001000 |

specifier | oaaoooagagaaouaasoagaaaacaaaaaaaaaagaa 101000 |

500" ;75 FIG. 5 5\10
specifier | aaoaaagaaaoaoaaoaasaacaaaaaaaagaacaaall IOIDOQI/ 610
600" 6l 615~ 5 and (0-5]]
width /2 [000000000000000000000000000000000 iBymoooj

\550 625~s and not i(width/Z)]
t | aoaaaaaaaaaaaaaaaaoaaaaaaaaaaaaaaaaaz‘r] 100000 |
630 635~ t and '(o—t)]
size/2 [000000000000000000000000000000000 L[100000 |
540 645~ t and not* (size/2j_]/
address | ¢ 00000000(7:00000000000000000000000000}7 { 000000}
650

FIG. 6

U.S. Patent Jan. 5,2016 Sheet 6 of 509 US 9,229,713 B2

700
<

Register number | [Wide operand specifier]f7 10

/7 % / '
:
Operond Memory / 715

checker Memory width
1 Register operand) ~7204A
e Register operand "} 720n
(* Portion 0
Portion 1 714
p Portion 2 ,/
730A-H —] ; Portion 3
T ~ Portion 4
Portion 5 7/35
Portion 6
725 !
N L Portion 7 Wide
operand
Function |~ 740
Function unit with dedicated storage

| Result 1 745

~————— Register widthf———o—

FlG. 7

US 9,229,713 B2

Sheet 7 of 509

Jan. 5, 2016

U.S. Patent

pu3

8 Old

]

[p2]62s w D 31015

([q:]65: {ps]63s ‘a°owm)uonounj=: o

[

&
945 NG =": AWM

Yi=2: yjowm
Qmm\ o4=7 21U

0s8

eny == ADOWM
821S=" 321S WM
A od=' od-ouwm
558 (9215 0d10WaWPOO|= "M

t

ssa.ppy [0NJA A
PaMOJjOSIg SSadY
o8 w01 da9x 7

s£8

0£8—"

(2)apoospapim=": 825
(3)pj0isuoyun=: 82zjsy'od
[21]68.1=": >

t

U.S. Patent Jan. 5,2016 Sheet 8 of 509 US 9,229,713 B2

O wmec.c contents

8
128
Qwmc.pa—-physical address []
Qwmec.size—size of contents o 3
g wmec.cv—contents valid 100
O wmec. th—thread last used ES
O wmec.reg—register last used E-_—?_-l
QO wmec.rtv—register & thread valid EU
7

FiG. 9

US 9,229,713 B2

Sheet 9 of 509

Jan. 5, 2016

U.S. Patent

yoay2
$S9.4pp0
a/qoua

wyjan HU
850042 /

(sowm

MO BasTowm

OF BId

oy

Y} WM

3

3

A} OWM

(spoasy)
43y)0)

[|H31
£

(spoauf)

s8yj0) \

4

840js
s/qous

owm sad

poasy) 18d

13p023p
vonINNSU)

7|L

@ ol el o lw]

do |

Jaquinu poany)

vononiysuf

US 9,229,713 B2

Sheet 10 of 509

Jan. 5, 2016

U.S. Patent

poo|
Arowaw
2/qoud

wijaiA
ssooys

MO 4ppoowm

L Ol

—~

0!} DPIJOAU]
8.10)S

[s] [o] {d] (3]
¥

92/5 WM

3]

pPAMOJIDSIP SS32aY

¥o9y9

8p029p
EY
9P

t

92/5) od

9)D/SUDJ}

Arowsw
{ON1IA

t

|

$$9.pp0
3/qous

poasy) sod

ay
915163,
$5929D

b))

2108
3)qous

U.S. Patent Jan. 5,2016 Sheet 11 of 509 US 9,229,713 B2

210

Operation codes

W.SWITCH.B Wide switch big-endian

W.SWITCH.L Wide switch little-endian

Selection

class op order
Wide switch W.SWITCH B L
Format

W.op.order ra=r¢ rd,rb
ra=woporder(rc,rd,rb)

3 24 23 18 17 12 1
| W.oporder | rd I ¢ |

8 6 6 6 6

FIG. 12A

U.S. Patent Jan. 5,2016 Sheet 12 of 509 US 9,229,713 B2

e T T T —
rb L A;l 1L 1
1) V\I’
A8 N
)|
H
| ﬂ
rad llnlnllnnulluu 10 BOERTINIIRITENIINNS lllllllll LI P IO T llllll ln JIBEINEIENIBIRRISITNNY]
Wide Switch

FIG. 12B

U.S. Patent Jan. 5,2016 Sheet 13 of 509 US 9,229,713 B2

1250
/

Definition

defWideSwitch(op,rd,rc,rb,ra)
d -— RegRead(rd, 128)
¢ <+—RegRead(rc, 64)
b-+— RegRead(rb, 128)
if c1 o# 0 then
raise AccessDisallowedByVirtual Address
elseif cg o 20 then
VirtAddr <— ¢ and (c-1)
W —«— wsize <— (¢ and {0-c))|) 0
else
VirAddr e—¢
W -e—wsize <+— 128
endif
msize <— B*wsize
Iwsize -— log(wsize)
case op of
W.SWITCH.B:
order -—8B
W.SWITCH.L:
order -— |,
endcase
m -— LoadMemory(c, VirtAddr,msize order)
dbe—dll b
fori-+—0to 127
j < Ol i1wsize-1..0
k<e— mrwqums'wﬁ" m 5’w+5“m4’w0j“ M 3wl My mwil mj

1< i7..1wsize" jwsize-1..0
a; e db,

endfor
RegWrite(ra, 128, a)
enddef

FIG. 12C

U.S. Patent Jan. 5,2016 Sheet 14 of 509 US 9,229,713 B2

1260

Exceptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 12D

U.S. Patent Jan. 5,2016 Sheet 15 of 509 US 9,229,713 B2

A

vsize=8

gsize=wsize

A

msize = wsize * vsize

spec = base + msize/16

Wide operand specifier for wide switch

FIG. 12E

U.S. Patent Jan. 5,2016 Sheet 16 of 509 US 9,229,713 B2

Definition

def WideSwitch(op,rd,rc,rb,ra)
d « RegRead(rd, 128)
¢ « RegRead(rc, 64)
b « RegRead(rb, 128)
ifcy. p=0then
raise OperandBoundary
elseif cg_g = O then
VirtAddr « ¢ and (c-1)

w < wsize « (c and (0-c)) || 01
else

raise OperandBoundary
endif
msize « 8*wsize
Iwsize « log(wsize)
case op of
W.SWITCH.B:
order « B
W.SWITCH.L:
order « L
endcase
m <« LoadMemory(c,VirtAddr,msize,order)
db«~djlb
fori < 0to 127
Jj < Ol iiwsize-1..0
k < m7=ywajllMme=w+jllms=w+jlimaw+jl IM3=w+jlim2=w+jl [Mwfim;
I is_iwsize || wsize-1..0
zj « db)
endfor
RegWrite(ra, 128, z)
enddef

FIG. 12F

U.S. Patent Jan. 5,2016 Sheet 17 of 509 US 9,229,713 B2

1210

Operation codes

W.TRANSLATE.8.B Wide translate bytes big-endian
W.TRANSLATE.16.B | Wide translate doublets bit-endian
W.TRANSLATE.32.B | Wide translate quadlets bit-endian
W.TRANSLATE.64.8 | Wide transiate octlets big-endian
W.TRANSLATE.8.L Wide translate bytes little-endian
W.TRANSLATE.16.L | Wide translate doublets little-endian
W.TRANSLATE.32.L | Wide translate quadlets little-endian
W.TRANSLATE.64.L |Wide translate octiets little-endian

Selection

class size order
Wide transiate 8 16 32 64 B L
Format

W.TRANSLATE size.order rd=rc,tb

rd=wiranslatesizeorder(rc,rb)
3 2434 1817 121 65 21 0
[wTRANSLATE order] vd] r¢] b] 0 [sz]
6 6 6 6 4 2

sz log(size) = 3

FIG. 13A

U.S. Patent Jan. 5,2016 Sheet 18 of 509 US 9,229,713 B2

1330

vsize

g size .
— w size

o
\ ot

Wide transiate: 16 entries by 64 bits

FIG. 13B

U.S. Patent Jan. 5,2016 Sheet 19 of 509 US 9,229,713 B2

1350

Definition

def Wide Translate(op,gsize,rd,rc,rb)
¢c-—RegRead(rc, 64)
b~e—RegRead(rb, 128)
lgsize<—log(gsize)
if Cigsize-4..0 # 0 then
raise AccessDisallowedByVirtual Address
endif
if €4 1gsize-3 * 0 then
wsize-e—(c and (0-c)) || 03
t-e—c and (c-1)
else
wsize «—128
tec
endif
Iwsize -e—log(wsize)
if Ywsize+d..Iwsize-2 # O then
msize-=—(t and (0-1)}]| 04
VirtAddr-—t and (t-1)
else
msize -—256*wsize
VirtAddr-e—t
endif
case op of
W.TRANSLATE.B:
order«—B
W.TRANSLATE.L:
order-e—L
endcase
m-e— LoadMemory(c,VirtAddr,msize,order)
vsize-+— msize/wsize
Ivsize-—log(vsize)
for i-e—0to 128-gsize by gsize
j=e—((order=B)lvsize JA(bygize.14i..i) "WSize+ijysize.1..0
3gsize-1+i..i*—Mjigsize-1. j
endfor
RegWrite(rd, 128, a)
enddef

FIG. 13C

U.S. Patent Jan. 5,2016 Sheet 20 of 509 US 9,229,713 B2

1380

Exceptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 13D

U.S. Patent Jan. 5,2016 Sheet 21 of 509 US 9,229,713 B2

vsize

gsize
wsize

msize = wsize * vsize

spec = base + msize/16 + wsize/8

Wide operand specifier for wide translate

FIG. 13E

US 9,229,713 B2

Sheet 22 of 509

Jan. 5, 2016

U.S. Patent

pJ

aZISA

aJ

4€1 'Old

sIq y9 Aq SOUIUS 9| iSje|suBl} SPIM

Y

9ZISM

U.S. Patent Jan. 5,2016 Sheet 23 of 509 US 9,229,713 B2

Definition

def WideTranslate(op,gsize,rd,rc,rb)
¢ « RegRead(rc, 64)
b < RegRead(rb, 128)
lgsize « log(gsize)
if Clgsize-4..0 # 0 then
raise OperandBoundary
endif
if c4. Igsize-3 # O then
wsize « (c and (0-c)) || 03
t« cand (c-1)
else
raise OperandBoundary
endif
Iwsize <« log(wsize)
if tgsize+lwsize-4..Iwsize-2 # 0 then
msize « (t and (0-1)) || 04
VirtAddr « t and (t-1)
else
raise OperandBoundary
endif
case op of
W.TRANSLATE.B:
order « B
W.TRANSLATE.L:
order « L
endcase
m <« LoadMemory(c,VirtAddr,msize,order)
vsize « msize/wsize
lvsize « log(vsize)
fori « 0 to 128-gsize by gsize
j « ((order=B)IVsiz€)A(byysize-1+i. i) Wsize+ilwsize-1..0
Zgsize-1+i..i < Mj+gsize-1..
endfor
RegWrite(rd, 128, z)
enddef

FIG. 13G

U.S. Patent

Jan. 5, 2016 Sheet 24 of 509 US 9,229,713 B2
Qoeration codes »— 1410
W.MUL.MAT.8.8 Wide mulliply matrix signed byte big-endian

W.MUL.MAT.8.L

Wide multiply matrix signed byte little-endian

W.MUL.MAT.16.B

Wide multiply matrix signed doublet big-endian

W.MUL.MAT.16.L

Wide multiply matrix signed doublet little-endian

W.MUL.MAT.32.B Wide multiply matrix signed quadlet big-endian
W.MUL.MAT.32.L Wide muitiply matrix signed aquadlet little-endian

W.MUL.MAT.C.8.8

Wide multiply matrix signed complex byte big-endian

W.MUL.MAT.C.8.L

Wide mulliply matrix_signed complex byta little-endian

W.MUL.MAT.C.16.B

Wide multiply matrix signed complex doublet big-endian

W.MUL.MAT.C.16.L

Wide multiply malrix_signed complex doublet little-endian

W.MUL.MAT.M.8.8

Wide multiply matrix mixed-signed byte big-endian

W.MUL MAT.M.8.L

Wide multiply matrix mixed-signed byte little-endian

W.MUL.MAT.M.16.8

Wide multiply matrix mixed-signed doublet big-endian

W.MUL.MAT.M.16.L

Wide multiply matrix mixed-signed doubiet little-endian

W.MUL.MAT M.32.B

Wide multiply matrix mixed-signed quad!et big-endian

W.MUL.MAT.M.32.L

Wide multiply matrix mixed-signed quadiet litile-endian

W.MUL.MAT.P.8.B

Wide mulliply matrix_polynomial byte big-endian

W.MULMATPB.L

Wide mulfiply matrix_polynomia!l byte little-endian

W.MUL.MAT.P.16.8

Wide multiply matrix polynomial doublet big-endian

W.MUL.MAT.P.16.L

Wide multiply matrix_polynomial doublet little-endian

W.MUL.MAT.P.32.B

Wide mulliply matrix polynomial quadlet big-endian

W.MUL.MAT.P.32.L

Wide multiply matrix polynomial quadlet little-endian

W.MUL.MAT.U.8.8

Wide multiply matrix unsigned byte big-endian

W.MUL.MAT.U.8.L

Wide multiply matrix_unsigned byte little-endian

W.MUL.MAT.U.16.B

Wide multiply matrix unsigned doublet big-endian

W.MUL.MAT U.16.L

Wide multiply matrix unsigned doubiet little-endian

W.MUL.MAT.U.32.8

Wide multiply matrix unsigned quadiet big-endian

W.MUL.MAT.U.32.L

Wide multiply matrix unsigned quadlet little-endian

Selection
class op type size order
multiply W.MUL.MAT | NONE MUP 8 16 32 B8
L
c 8 16 B
L
Egrmat
W.op.size.order rd=rc,rb
rd=wopsizeorder(rc,rb)
31 2423 1817 1211 65 21 O
[WMINORorder | rd | rc [1o] Wop |sz)
8 6) 6 4 2

sz -+ log(size) - 3

FIG. 14A

U.S. Patent Jan. 5,2016 Sheet 25 of 509 US 9,229,713 B2

'/' 1430
m(rc](128*64/size)
511
127
v) p
b p ® b
t !
T{] ‘r 1 | rb(128)
L] L] * L
[4) [] []
® 2 ®
9 [] L) 0
‘/4/'/ 0
L L 1 1]
128 rd(128) 0

Wide multiply matrix

FIG. 14B

U.S. Patent Jan. 5,2016 Sheet 26 of 509 US 9,229,713 B2

/-1460

mirc}(64*64/size)
255

127

rb(128)

L 1 1 1
128 rd(128)

Wide multiply matrix complex

FIG. 14C

U.S. Patent Jan. 5,2016 Sheet 27 of 509 US 9,229,713 B2

1480
Definition)/
def mul(size,h,vs,v.i,ws j)as

mul=—((vs&Vsiza-1+i)"" 52 Vg7 141 i) *((WS&Wsize-14§)"S2¢]| Weizg.14, ;)
enddef

def c-«—PolyMultiply(size,a,b) as
p[Q].g.-oz'size
for k=0 to size-1 , .
plk+1]~—plk] * a7 (052> || o[*) : @Z"size
endfor
¢ ~+—plsize}
enddef

def WideMultiplyMatrix(major,op,gsize,rd,rc,rb)
d-«—RegRead(rd, 128)
¢ -—RegRead(rc, 64)
b -—RegRead(rb,128)
Igsize <+—log(gsize)
if Cigsize-4..0 2 0 then
raise AccessDisallowedByVirtualAddress
endif
if €7 1gsize-3 # 0 then
wsize =—(c and (0-c))|| 0
t-e—c and {¢c-1)
eise
wsize-e—64
{2
endif
lwsize -e—log(wsize)
if tiwsize-6-1gsize..iwsize-3 2 O then
msize -—(t and (0-1)) }} 0*
VirtAddr -—t and (t-1)
else
msize «—128*wsizel/gsize
VirtAddr-e—t
endif
case major of
W.MINOR.B:
order B
W.MINOR.L:
order-e—L
endcase

FIG. 14D-1

U.S. Patent Jan. 5,2016 Sheet 28 of 509 US 9,229,713 B2

1480
/

case op of
M.MUL.MAT.U.8, W.MUL.MAT.U.16, W.MUL.MAT.U.32,
W.MUL.MAT.U.64:
ms-e—bs «—0
W.MUL.MAT .M.8, W.MUL.MAT.M.16, W.MUL.MAT .M. 32,
W.MUL . MAT .M.64
ms -0
bs -1
W.MUL MAT.8, W.MUL .MAT .16, W.MUL.MAT.32,
W.MUL.MAT .64, W.MUL.MAT.C.8, W.MUL.MAT.C.16,
W.MUL.MAT.C.32, W.MUL. MAT.C .64:
ms «—bs <—1
W.MUL.MAT.P.8, W.MUL MAT .P.16, W.MUL.MAT.P.32,
W.MUL.MAT.P.64:
endcase
m -« LoadMemory(c,VirtAddr,msize,order)
h -—2%gsize

for i =0 to wsize-gsize by gsize
q[0] ~— 02'9size
for j<—0 to vsize-gsize by gsize
case op of
W.MUL.MAT.P.8, W.MUL.MAT.P. 16,
W.MUL.MAT P.32, W.MUL.MAT.P.64:
k <—+wsize*jg igsize
qlj+gsize] < q[j] * PolyMultiply(gsize,my.gsize-1. ks
bj+gsize-1..)
W.MUL.MAT.C.8, W.MUL.MAT.C.16, W.MUL.MAT.C.32,
W.MUL.MAT.C.64:
if (~i) & gsize =0 then
k=—i-(jagsize)+wsize*jg igsize1
glj+gsize}=— q[i] + mul(gsize,h,ms,m k,bs,b,j}
else
k —— i+gsize+wsize’jg_igsize+1
gli+gsize]w—qfi} = mul(gsize,h,ms,m k,bs,b,j)
endif

FIG. 14D-2

U.S. Patent Jan. 5,2016 Sheet 29 of 509 US 9,229,713 B2

1480
’/.

W.MUL MAT .8, W.MUL. MAT .16, W.MUL.MAT .32,
W.MUL.MAT.64, W.MUL.MAT.M.8, W.MUL.MAT M.18,
W.MUL MAT.M.32, W.MUL. MAT.M.64, W.MUL.MAT.U.8,
W.MUL.MAT.U.16, W.MUL.MAT .U.32, W.MUL.MAT.U.64
qli+gsize} —-— qfi} + mul(gsize,h,ms,m,i+wsize*

j&.lgsize,bs,b.i)
endfor

82+gsize-1+2%i..2% <+—qlvsize]
endfor
a127..2'wsize <+ 0
RegWrite(rd, 128, a)
enddef

FIG. 14D-3

U.S. Patent Jan. 5,2016 Sheet 30 of 509 US 9,229,713 B2

1490

Exceptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 14E

U.S. Patent Jan. 5,2016 Sheet 31 of 509 US 9,229,713 B2

vsize

gsize
wsize

msize = wsize * vsize

spec = base + msize/16 + wsize/16

Wide operand specifier for wide multiply matrix

FIG. 14F

U.S. Patent Jan. 5,2016 Sheet 32 of 509 US 9,229,713 B2

Definition

def mul(size,h,vs,v,i,ws,w,j) as

mul « ((vs&Vsize-1+)"S1Z8 || Vsize-1+1.1) * ((ws&wsgize-1 ﬂ)h-size Il wsize-1+j..j)
enddef

def ¢ « PolyMultiply(size,a,b) as
p[0] « 02'size
for k « O to size-1
plk+1] « plk] * ak ? (05ize-K || b || k) : 02'size
endfor
C « p[size]
enddef

def WideMultiplyMatrix(major,op,gsize,rd,rc,rb)
d « RegRead(rd, 128)
¢ « RegRead(rc, 64)
"b « RegRead(rb, 128)

lgsize « log(gsize)

if Cigsize-4..0 = 0 then
raise OperandBoundary

endif

if €2, igsize-3 # 0 then
wsize « (c and (0-c)) || 04
t«cand (c-1)

else

raise OperandBoundary
endif

lwsize « log(wsize)

if iwsize+3-Igsize. Iwsize-3 # O then
msize « (t and (0-t)) || 04
VirtAddr « t and.(t-1)

else

raise OperandBoundary
endif
case major of
W.MINOR.B:
order « B
W.MINOR.L:
order « L

FIG. 14G-1

U.S. Patent Jan. 5,2016 Sheet 33 of 509 US 9,229,713 B2

endcase
case op of

W.MULMAT.U.8, W.MUL.MAT.U.16, W.MULMAT.U.32, W MUL.MAT U.64:
ms«bs« 0

W.MUL.MAT.M.8, W.MUL.MAT.M.16, W.MUL MAT.M.32, W. MUL MAT.M.64:
ms« 0
bs « 1

W.MUL.MAT.8, WMULMAT.16, W.MUL.MAT.32, W.MUL.MAT 64,

W.MUL.MAT.C.8, W.MUL.MAT.C.16, W.MUL.MAT.C.32, W MUL MAT.C.64:
ms « bs « 1

W.MUL.MAT.P.8, W.MUL.MAT.P.16, W MUL.MAT .P.32, W.MUL.MAT.P.64;
endcase

m « LoadMemory(c,VirtAddr,msize,order)
h « 2*gsize
for i « O to wsize-gsize by gsize
q[0] « o"
for j < 0 to vsize-gsize by gsize
case op of
W.MUL.MAT.P.8, W.MUL.MAT.P.16, W.MUL.MAT.P.32, W MUL.MAT.P.64:
k « i+wsize*jg_igsize
qli+gsize] « q[i] * PolyMultiply(gsize,Mk+gsize-1. kibj+gsize-1.j)
W.MUL.MAT.C.8, W.MUL.MAT.C.16, W.MUL MAT.C.32, W.MUL.MAT.C.64:.
if (~i) & | & gsize = 0 then
k « i-(j&gsize)+wsize')s. Igsize+1
qli+gsize] « q[j} + mul(gsize,h,ms,m.k,bs,b j)
else
k i"'gSiZe"’WSiZe'jB.'|gsize+1
qli+gsize] « gfj] - mul(gsize,h,ms,m k,bs,b,j)
endif
W.MUL.MAT.8, W.MUL.MAT.16, W.MUL.MAT.32, W.MUL MAT .64,
W.MUL MAT.M.8, W.MUL.MAT.M.16, W.MUL.MAT.M.32, W.MUL. MAT.M.64,
W.MUL.MAT.U.8, W.MUL.MAT.U.16, W.MUL.MAT.U.32, W.MUL.MAT.U.64:
qgli+gsize] «- qli] + mul(gsize,h,ms,m,i+wsize*jg_igsize,bs\b.j)
endfor
22*gsize-1+2%i..2%i < glvsize]
endfor
2427..2*wsize < 0
RegWrite(rd, 128, az)
enddef

FIG. 14G-2

U.S. Patent Jan. 5,2016 Sheet 34 of 509 US 9,229,713 B2

1510
y

‘Operation codes

W.MUL.MAT.X.B 1 Wide multiply matrix extract big-endian
W.MUL.MAT.X.L Wide multiply matrix extract little-indian
Selection
class op order
Multiply matrix extract W.MUL . MAT.X B L
Format
W.op.order ra=rc,rd,rb
ra=wop(rc,rd,rb)
3 2423 1817 1241 65 0
[Wop.order | rd I i [ra]
8 6 6 6 6

FIG. 15A

U.S. Patent Jan. 5,2016 Sheet 35 of 509 US 9,229,713 B2

1520
y

K} 2423 161514131211109 8 0
] fsize 1 dpos [xtsinim]1]rnd} gssp |
8 3 T1111 2)

FIG. 168

U.S. Patent Jan. 5,2016 Sheet 36 of 509 US 9,229,713 B2

’/—1530
1023 m(rc](128*128/size)
127
p 1') p p p 4
P p J 4 p 4) L J
! b ' 3 ¢ | ¢ ¢ ¢
3 3 4 4 3 1 4 [
rd(128)
¢ ¢ ¢ Y 3 ® 1]
L] ¢ L L 4 l [L
[]]) ® J [] ¢
¢ ® T ¢ ® ¢ ® r 3 0
Y Y v 0
extract * gxtracl/| exlr§y¢ extracl L
oxiracy/ | \extracl/ [Nextrac/ | \extracy/ F0(32)
i Dl o 2

C I T T T T T 1
128 ra(128) 0

Wide muitiply matrix extract doublets

FIG. 16C

U.S. Patent Jan. 5,2016 Sheet 37 of 509 US 9,229,713 B2

/1560

511 rc{64*128/size)

127

i

i 1 Y
extract l extrac extrggy extrac
2] 02

extrac \exlracy extr

v ‘fj
I T 1T T 1T 1T 1T 1

128 ra(128) 0
Wide multiply matrix extract complex doublets

FIG. 15D

U.S. Patent Jan. 5,2016 Sheet 38 of 509 US 9,229,713 B2

Definition ',.1580
def mullsize,h,vs,v,i,ws,w,j) as

ddmfu!<— ((vs&vsize-14i)h-size]|vsize-14i..i) * ((WSBWsize-15))15i28 | Wsizg_1.)
endde

def WideMultiplyMatrixExtract{op,ra,rb,rc,rd)
d-RegRead(rd, 128)
¢-+RegRead(rc, 64)
b-+—RegRead(rb, 128)
case bg_o of
0..255:
sgsize «—128
256..383:
sgsize-<64
384..447:
sgsize 32
448..479:
sgsize 16
480..495:
sgsize <8
496..503:
sgsize-e—4
504..507:
sgsize -2
508..511:
sgsize -1
endcase
b1y
m-<~by2
n-ebi3
sighed-e—b14
ifcy g 20 then
wsize <—(c and (0-c)) J| 0*
t ¢ and (c-1)
else
wsize - 128
t-—c
engif
if sgsize < 8 then
gsize -8
elseif sgsize > wsize/2 then
gsize w—wsizel2
else

FIG. 15E-1

U.S. Patent Jan. 5,2016 Sheet 39 of 509 US 9,229,713 B2

1580

gsizee—5gsize
endif
Igsize-e—log(gsize
twsize -e-—log(wsize)
if tiwsize+6-n-lgsize. wsize-3 7 O then

msize -« (L and (0-t)))| 04

VirtAddr <1 and (t-1)
else

msize -« 64*(2-n)*wsize/gsize

VirtAddr et
endif
vsize -—(1+n)*msize*gsize/wsize
mm -« LoadMemory(c,VirtAddr,msize,order)
Imsize e~ log(msize)
if (VirtAddr)pgiz6.4. 0% 0 then

raise AccessDisallowedByVirtualAddress
endif
case op of

W.MUL.MAT.X.B:

order- B
W.MUL.MAT.X.L:
order <L

endcase
ms -e—Signed
ds -—-signed *m
as-e—signed orm
spos - (bg o) and {2'gsize-1)
dpos——(0{| b2y, 16) and (gsize-1)
I - Spos
sfsize <~ (0}| b3y 24) and (gsize-1)
tfsize -~ (stsize = Q) or ((sfsize+dpos) > gsize) ? gsize-dpos : sfsize
fsize —e—(tfsize + spos > h) ? h - spos : tfsize
if (byp..9 = Z) & ~signed then

rnd «F
else

rnd - byg.9
endif

FIG. 15E-2

U.S. Patent Jan. 5,2016 Sheet 40 of 509 US 9,229,713 B2

1580
for i -0 to wsize-gsize by gsize ~
ql0] < (2°gsize+7-lgsize
for j -0 to vsize-gsize by gsize
if n then
if (~) &) &gsize =0 then
k- i-(jagsize)+wsize'ls igsize1
qfi+gsize] - qli] + mul(gsize,h,ms,mm k,ds,d,j)
else
k -~ i+gsize+wsize'jg_igsizes1
qli+gsize) -~ q[i] - mul(gsize;h,ms.mm k,ds,d,j)
endif
else
qli+gsize] - gli} = mul(gsize,h,ms,mm,i+j*wsize/gsize,ds,d,j)
endif
endfor
p <—q[128]
case rnd of
none, N:
, s < 0" || ~p, |] pr-?
S Oh.r” p;‘_1
F:
s QP

s OR-T{| 47
endcase
v ((ds & ph-1){| p) + (0]})

if (Vhy_r+fsize = (35 & Vrasize.1)M*1--15128) or not 1 then
w ~—(as & Vr+fsize-1)gs;ze"fSiza'dposustile.pf_,f" pdpos
else W5 ? (vh"__vgsize-dpos‘1) . 1gsize-dpos) nodpos
endif
dsize-1+..i W
endfor
3127..wsize <0
RegWrite(ra, 128, a)
enddef

FIG. 15E-3

U.S. Patent Jan. 5,2016 Sheet 41 of 509 US 9,229,713 B2

1570

Exceptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 15F

U.S. Patent Jan. 5,2016 Sheet 42 of 509 US 9,229,713 B2

vsize

gsize
. -
wsize

msize = wsize * vsize

spec = base + msize/16 + wsize/16

Wide operand specifier for wide multiply matrix extract

FIG. 15G

U.S. Patent Jan. 5,2016 Sheet 43 of 509 US 9,229,713 B2

Definition

def mul(size,h,vs,v,i,ws,w,j) as

mul < ((vs&Vsize-1+1)"57€ || Vsize-1+i..) * ((WSBWsize-1+)"S12€ || Wsize-14].j)
enddef

def WideMultiplyMatrixExtract(op,ra,rb,rc,rd)
d « RegRead(rd, 128)
¢ + RegRead(rc, 64)
b « RegRead(rb, 128)
wsize « (c and (0-c)) || 0%
if wsize>128 then
raise OperandBoundary
endif
iwsize « log{wsize)
t «c and (c-1)
msize « (t and (0-t)} || 04
if msize>(16*wsize) then
raise OperandBoundary
endif
imsize « log{msize)
ca « tand({t-1)
vsize « msize/wsize
case bg_p of
0..255:
sgsize « 128
256..383:
sgsize « 64
384..447:
sgsize « 32
448..479:
sgsize « 16
480..495:
sgsize « 8
496..503:
sgsize « 4
504..507:
sgsize « 2
508..511;
sgsize « 1
endcase
1« byq
m « b2
n < b3

FIG. 15H-1

U.S. Patent Jan. 5,2016 Sheet 44 of 509 US 9,229,713 B2

signed « bqg
X « bqs and (wsize<64)
if (sgsize < 8) or (sgsize > min(128/(n+1)/vsize, wsize/(n+1))) then
raise ReservedInstruction
endif
gsize < sgsize
Igsize « log(gsize)
h « (2*gsize) + 7 - Igsize
OperandBoundary case op of
W.MUL.MAT.X.B:
order « B
W.MUL.MAT . X.L:
order « L
endcase
cm « LoadMemory(c,ca,msize,order)
¢s « signed
ds « signed * m
Zs « signedormorn
zsize « gsize*(x+1)
spos « (bg_0) and (2*gsize-1)
dpos « (0 || b23..16) and (gsize-1)
I « spos
sfsize « (0 || b31_24) and (gsize-1)
tfsize «— (sfsize = 0) or ((sfsize+dpos) > gsize) ? gsize-dpos : sisize
fsize « (tfsize + spos > h+1) ? h+1 - spos : tfsize
if (b10.9=2) & ~zs then
md« F
else
md « b1g.9
endif
for i « 0 to wsize-gsize by gsize
k « i*zsizelgsize
g[0] « oh
for j « 0 to (vsize-1)*gsize by gsize
if n then
if (~i) & j & gsize = 0 then
k « i-{j&gsize)+wsize”jg_ Igsize+1
afi+gsize} « q[j] + mul(gsize,h,cs,cm,k,ds,d j)
else
k « i+gSiZe+WSiZe’j8_'lgsize+1
qli+gsize] « q[j] - mul(gsize,h,cs,cm,k ds,d,j)
endif
else
dli+gsize} « qli] + mul(gsize,h,cs,cm,i+j*wsize/gsize,ds.d.j)
endif
endfor
P « q[128]
case rnd of

FIG. 15H-2

U.S. Patent Jan. 5,2016 Sheet 45 of 509 US 9,229,713 B2

none, N:
s« O™ i pr || ~pf"
Z:
s < 0Nl pf, 4
F:
s «0h
C:
s 0P ar
endcase
Vv « ((ds & ph-1)ilp) + (Olis)
if (Vh_r+fsize = (ZS & Vrafsize-1)M* 1-7-15128) or not | then
W (zs & Vr+fsize-1)25ize'f5ize_dp°s | Visize-1+r..r |} dpos
else
we (zs7? (vﬁsize-fsize—dposﬂ”..vLsize-1) . Ozsize-fsize-dpos”1fsize) I gdpos
endif
Zzsize-1+k. .k €« W
endfor
2127, .wsize*(14x) < 0
RegWrite(ra, 128, z)
enddef

FIG. 15H-3

U.S. Patent

Qperation codes

Jan. 5, 2016

Sheet 46 of 509

»— 1610

W.MUL.MAT.X.1.8.8

Wide mulliply matrix exiract immediats signed byte big-andian

W.MUL. MAT.X.1.8.L

Wide multiply matrix exiract immediale signed byte litlle-endian

W.MUL MAT.X.1.16.8

Wide mulliply matrix exiract immediate signed doublet big-endian

W.MUL. MAT.X.1.16.L

Wide mulliply malrix extract immediate signed doublet liltis-endian

W.MUL.MAT.X.1.32.B

Wide multiply matrix extracl immediata signed quadletl big-endian

W.MUL.MAT.X.I.32.L

Wide multiply matrix extract immediata signed quadiet little-endian

W.MUL.MAT.X.1.64.B

Wids multiply matrix exlracl immediate signed octiels big-endian

W.MUL.MAT.X.1.64.L

Wide multiply matrix extract immadiale signed octlels litlfe-endian

W.MUL.MAT.X.1.C.8.B

Wide multiply matrix exiract immediale complex bytes big-endian

W.MUL.MAT.X.1.C8.L

Wids mulliply matsix sxtiact immediate complex byles little-endian

W.MUL.MAT.X.1.C.16.B

Wide mulliply matrix extract immediate complex doublets big-gndian

W.MUL.MAT.X.I.C.16.L

Wide multiply malrix extract immadiale complex doublats liitle-andian

W.MUL.MAT.X..C.32.8

Wide mulliply malrix extract immediate complex quadlels big-endian

W.MUL.MAT.X.1.C.32.L

Wide muitiply matrix sxtract immediate complex quadiels hitlle-endian

US 9,229,713 B2

Selection
class op : type size order
wide multiply W.MUL.MAT X.| NON 816 3264 | LB
extract immediate c - 8 16 32 L8
Format
W.op.tsize.order rd=rc,rb, i
rd=woptsizeorder(rc,rb,i}

3 24 23 18 17 1211 654 32 0

[Woporder | 1 [rc D [tTsz T sh

8 6 8] 1 2 3

sz-+ log(size) - 3

assert size+3 2 i > size-4

sh-wi- size

FIG. 16A

U.S. Patent Jan. 5,2016 Sheet 47 of 509 US 9,229,713 B2

1630
/

1023 mirc)(128*128/size)

127
4 p L [] [] [] [
3 p ®) b) p [
* 3 ¢ 4] b L L X
p 4 4 L 4 4 p ® [
rd(128)
b {D p Ji 4 1 [] [4
¢ ¢ ¢ 'Y ¢ ¢ 3 4»
L] b ‘r 1r [p < L
L] 3 ¢ [3 ¢ ¢ [3 ¢
0
4 Y 1 \ 0
exlrWY\axtracV ‘ extracl/ \Nextracl/ |
\extracl/ | \extract/ {\extract/ | \extrac
Y ¥y Y ¥ v
I 1t T T T 1 T 1]
128 rd(128) 0

Wide multiply matrix extract immediate doublets

FIG. 168

U.S. Patent Jan. 5,2016 Sheet 48 of 509 US 9,229,713 B2

1560
511 rc(64*128size)
aroacoal
% % gg rb(128)

Y | \
\extract/ \exlrac;/k trac xtrac
\exiracl/ | \extract/ §extrac§7 exirac

Y ¥ Y ¥ v ¥
T T T T T T

128 rd(128) 0
Wide multiply matrix extract immediate complex doublets

i

FIG. 16C

U.S. Patent Jan. 5,2016 Sheet 49 of 509 US 9,229,713 B2

1680
Definition r—

def mul(size,h,vs,v,i,ws,w,j) as

MUl <= {(vS&Vsize- 1+ JV-Si28| Veize-1ui.i} * ((WS&Wsize- 14§ 2% | Wsize. 145,)
enddef

def WideMultiplyMatrixExtractimmediate(op,type, gsize,rd rc,rb,sh)
¢ -—RegRead(rc, 64)
b-e—RegRead(rb, 128)
lgsize «—log(gsize)
case type of
NONE:
if Cigsize-4..0 # 0 then
raise AccessDisallowedBy VirtualAddress
endif
if C3_.igsize-3 2 0 then
wsize < (c and (0-c))]| 0*
t-e—c and (c-1)
else
wsize «—128
{e—c
endif
Iwsize ~—log(wsize)
if tlwsize'»s-lgsize..stiza-3 # 0 then
msize ——(t and (0-1)) | 0¢
VirtAddr ~—t and (t-1)
else
msize < 128*wsize/gsize
VirtAddr-—t

if Cigsize-4..0 # 0 then
raise AccessDisallowedByVirtualAddress
endif
if €3.1gsize-3 # 0 then
wsize <—(c and (0-c)) || 0*
t-—c and (c-1)
else
wsize <+—128
tw—¢
endif
Iwsize <—log(wsize)
If tiwsize+5-gsize..lwsize-3 # 0 then
msize -—(t and (0-1))]| 04

FIG. 16D-1

U.S. Patent Jan. 5,2016 Sheet 50 of 509 US 9,229,713 B2

VirtAddre— t and (t-1) »—1680
else
msize <—64*wsize/gsize
VirtAddr -t
endif
vsize - 2'msize*gsizelwsize
endcase
case of of
W.MUL.MAT.X.1.B:
order-—B
W.MUL MAT . X.1.L:
order-e— L
endcase
as-e—ms <«—bs <1
m-w— LoadMemory(c,VirtAddr,msize,order)
h - (2°gsize) + 7 - Igsize-(ms and bs)
r -e—gsize + (sh3 ||sh)
for-e—0 to wslze gsize by gsize
q[0]—— 02°gsize+7-Igsize
for j—-— 0 to vsize-gsize by gsize
case type of
NONE:
glj+gsize] -e—qji] + mul{gsize,h,ms,m,i+wsize*
ja..lgsize.bs.b.i)

if (~i} & j & gsize = O then

k <—i-(&gsize) +Wsize*jg_josizort

| gli+gsize] -« qfi] + mul(gsnze h,ms,m k,bs,b,j)

else

k < i+gsize+wsize'jg |osize+1

qlj+gsize] -—q[j} - mul(%suze h,ms,m,k,bs,b,j)

endif
endcase

endfor

p -—qjvsize]

s——0h-|| ~p, || pt-1

v-a-((as & pp)| p) +(0ls)

if (Vh..r+gsize = (35 & Vregsize-1)h1-7-0size then
agsize-1+i..i 4~ Vgsize-1+1..1

else .

3gsize-1+i.i<~ as ? (vy||-vE¥2%1) : 1gsize

endif

endfor

3127..wsize <+ 0

RegWrite(rd, 128, a)

enddef FIG 16D-2

U.S. Patent Jan. 5,2016 Sheet 51 of 509 US 9,229,713 B2

1690

Exceptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 16E

U.S. Patent Jan. 5,2016 Sheet 52 of 509 US 9,229,713 B2

vsize

gsize
. -
wsize

A

msize = wsize * vsize

spec = base + msize/16 + wsize/8

Wide operand specifier for wide multiply matrix extract immediate

FIG. 16F

U.S. Patent

Jan. 5, 2016 Sheet 53 of 509

Definition

def mul{size,h,vs,v,i,ws,w,j) as

Mul « ((vs&vsize-1+)"128 || Vgiza.1+i.i) * (WSBWsize-1+))SIZ€ || Wsize-1+j.j)

enddef

def WideMultiplyMatrixExtractimmediate(op,type,gsize,rd,rc,rb,sh)

¢ « RegRead(rc, 64)
b « RegRead(rb, 128)
Igsize « log(gsize)
case type of

NONE:

if cigsize4..0 # 0 then

raise OperandBoundary
endif
if ¢3_1gsize-3 # 0 then

wsize « (cand (0-c)) j 04
t«cand (c-1)
else
raise OperandBoundary
endif
lwsize « log(wsize)
if Ywsize+3-igsize..lwsize-3 # O then
msize « (t and (0-1)) || 0%
VirtAddr « t and (t-1)
else
raise OperandBoundary
endif
vsize « msize*gsize/wsize

if Cigsize4..0 2 0 then
raise OperandBoundary
endif
if C3_.|gsize_3 = 0 then
wsize « (c and (0-c)) || 0¢
t+ cand (c-1)
else
wsize « 128
tc
endif
lwsize « log(wsize)

if Ywsize+2-Igsize. lwsize-3 # O then

FIG. 16G-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 54 of 509 US 9,229,713 B2

msize « (tand (0-1)) || 04
VirtAddr < t and (t-1)
else

raise OperandBoundary
endif
vsize « 2*msize*gsize/wsize
endcase
case op of
W.MUL.MAT.X.1.B:
order « B
W.MUL MAT X.LL:
order « L
endcase
2SS ms « bs « 1
m <« LoadMemory(c,VirtAddr,msize,arder)
h « (2*gsize) + 7 - Igsize - (ms and bs)
r < gsize + (sh3 |ish)
for i « O to wsize-gsize by gsize
ql0] « 0"
for j « O to vsize-gsize by gsize
case type of
NONE:
qli+gsize] « q[i] + mul(gsize,h,ms,m,i+wsize*jg_|gsize.bs.b.j)

C:
if (~i) & j & gsize = 0 then
k « i-(j&gsize)+wsize’jg. igsize+1
qli+gsize] « q[j} + mul{gsize,h,ms,m,k,bs,b,j)
else
K « i+gsize+twsize'jg_igsize+1
qfi+gsize] « q[j} - mul(gsize,h,ms,mk,bs,b,j)
endif
endcase
endfor
p « glvsize]

s < 0N || pr || ~pf-*

v < ((zs & pp-1)iip) + (Olls)

if (Vh..r+gsize = (25 & Vrigsize-1)h+1-r -gsize then
Zgsize-1+i..i ¢~ Vgsize-1+r..r

else
Zgsize-1+i..i « 28 ? (v || ~vSize-1) : 1gsize

endif

endfor

2127 .wsize < 0
RegWrite(rd, 128, z)
enddef

FIG. 16G-2

U.S. Patent Jan. 5,2016 Sheet 55 of 509 US 9,229,713 B2

»— 1710
Operation codes

W.MUL.MAT.C.F.16.B | Wide multiply matsix complex fioating-point hall big-endian
W.MULMAT.C.F.16.L Wide multiply matrix complax foating-point little-endian
W.MUL.MAT.C.F.32.8 Wide multiply matrix complex floating-point single big-endian
W.MUL.MAT.C.F.32.L Wide multiply matrix complex floating-poin! singie little-endian
W.MUL.MAT.F.16.8 Wide multiply matrix floating-point half big-endian
W.MUL.MAT.F.16.L Wide multiply matrix floaling-point half little-andian
W.MUL.MAT.F.32.8 Wide multiply matnx floaling-point single big-endian
W.MUL MAT.F.32.L Wide multiply matrix floating-point single litle-endian
W.MULMAT.F.64.8 Wide muitiply malrix floating-point double big-endian
W.MUL .MAT.F.64.L Wida multiply matrix foating-point double littls-endian
Selection
¢class op type prec order
wide mulliply matrix | W.MUL.MAT F 16 32 64 LB
CF 16 32 LB

Format
W.op.prec.order rd=rc,rb
rd=wopprecorder(rc,rb)

3 2423 18 17 12 11 655 21 0

[W.MINOR.order | rd | rc | rb

T Wop] pr]
) 3 5 3 5 2

Pr e log{prec) - 3

FIG. 17A

U.S. Patent Jan. 5,2016 Sheet 56 of 509 US 9,229,713 B2

/1730

1023 mirc])(128*128/size)

127
p ® 1 L 1» 1 p 1
p p [® p b [] ®
< b < ¢ | ¢ ¢]
b b < [b] [L
rb(128)
) ir [[® [[3 3
[] ® [L ® [)] *
] [[® 4] []
®] [[9 [] [4 0
Y Y v t v?
e i i 1 | I |
128 rd(128) 0

Wide multiply matrix floating-point half

FIG. 178

U.S. Patent

Jan. 5, 2016 Sheet 57 of 509 US 9,229,713 B2
/1750
511 rc(64*128/size)
‘ ‘ 127
% g rb(128)
p 1 1 1 p 0
;Y Y Y Y Y ¥y ¥ 0
1 | L1] 1 |
128 rd(128) 0

Wide multiply matrix complex floating-point half

FIG. 17C

U.S. Patent Jan. 5,2016 Sheet 58 of 509 US 9,229,713 B2

Definition
def mul(size,v,i,w,j) as

mul < tmul(F(size, Vsize-14i..i) F (size,Wsize-1+j..j)}
enddef

def WideMultiplyMatrixFioatingPoint{major,op,gsize,rd,rc,rb)
c-+— RegRead(rc, 64)
b -=—RegRead(rb, 128)
Igsize - log(gsize)
swilch op of
W.MUL.MAT.F.16, W.MUL.MAT.F.32, W.MUL.MAT.F .64:
if Cigsize-4..0 # 0 then
raise AccessDisallowedByVirtualAddress
endif
if ¢3.1gsize-3 # 0 then
wsize - (c and (0-c))|| 0*
t-e—c and (¢c-1)
else
wsize «—128
t-—c
endif
Iwsize e—log(wsize)
if tiwsize+6gsize..lwsize-3 # 0 then
msize e (t and (0-t))}| 0¢
VirlAddr-—t and (1-1)
else
msize - 128*wsize/gsize
VirtAddr ~—t
endif
vsize-+—msize*gsize/wsize
W.MUL.MAT.C.F.16, W.MUL.MAT.C.F.32, W.MUL.MAT.C F.64:
if Cigsize-4..0 # 0 then
raise AccessDisallowedByVirtualAddress
endif
if 3 1gsize-3# O then
wsize - (c and (0-c))|} 0°
t-e—c and (c-1)
else
wsize «—128
¢
endif
lwsize «—log(wsize)
if twsize+5-Igsize..lwsize-3 # 0 then

FIG. 17D-1

U.S. Patent Jan. 5,2016 Sheet 59 of 509 US 9,229,713 B2

msize-— (t and (0-))f] 0*
VirtAddr-e—t and (t-1)
else
msize «—B4*wsizelgsize
VirtAddr «—t
endif
vsize -—2'msize*gsize/wsize
endcase
case major of
M.MINOR.B:
order<—B
M.MINOR.L:
order-e—L
endcase
m -=—LoadMemory(c,VirtAddr,msize, order)
for i =—0 to wsize-gsize by gsize
q[0].t-=—NULL ,
for j-—0 lo vsize-gsize by gsize
case op of
W.MUL.MAT.F.16, W.MUL.MAT.F.32, W.MUL.MAT.F.64:
q[j+gsize]<—laddq[j]. mul{gsize,m,i+wsize*
ig. lgsiza+1:0+))
WO e 16 W.MUL.MAT.C.F .32,
W.MUL.MAT.C.F.64;
if (~i) & j & gsize = 0 then
k <—i-(j&gsize)+wsizejg igsize+1
qlj+gsize] <—faqqlj], mul(gsne m,k,b,j})
else
kKo i+gsize+wsize'i8__|gstQ+1
qlj+gsize] - fsubqlj], mul{gsize,mk,b,j})
endif
endcase
endfor
agsize-1+i..i~e— q[vsize]
endfor
3127, wsize <+ 0
RegWrite(rd, 128, a)
enddef

FIG. 17D-2

U.S. Patent Jan. 5,2016 Sheet 60 of 509 US 9,229,713 B2

1780

Exceptions

Floating-point arithmetic

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 17E

U.S. Patent Jan. 5,2016 Sheet 61 of 509 US 9,229,713 B2

vsize

gsize
wsize

A

msize = wsize * vsize

spec = base + msize/16 + wsize/16

Wide operand specifier for wide multiply matrix floating-point

FIG. 17F

U.S. Patent Jan. 5,2016 Sheet 62 of 509

Definition

def mul(size,v,i,w,j) as
mul < fmul(F(size,vsize-1+i..i).F(size Wsize-14. j))
enddef

def WideMultiplyMatrixFloatingPoint(major,op,gsize,rd,rc,rb)

¢ « RegRead(rc, 64)

b « RegRead(rb, 128)

Igsize « log(gsize)

switch op of

W.MUL.MAT.F.16, W.MUL.MAT.F.32, W.MUL.MAT.F.64:
if Cigsize-4..0 = 0 then
raise OperandBoundary

endif
if €3 _Igsize-3 # 0 then

wsize « (c and (0-c)) || 04
t «- cand (c-1)
else
raise OperandBoundary
endif
lwsize « log(wsize)
if twsize+3-Igsize..iwsize-3 # 0 then
msize « (t and (0-)) || 0%
VirtAddr « t and (t-1)
else

raise OperandBoundary
endif
vsize « msize*gsizefwsize

W.MUL.MAT.C.F.16, W.MUL.MAT.C.F.32, W.MUL.MAT.C.F.64:

if Cigsize-4..0 # 0 then

raise OperandBoundary
endif
if c3.Igsize-3 # 0 then

wsize « (¢ and (0-c)) || 04

t« cand (c-1)
else

raise OperandBoundary
endif

FIG. 17G-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 63 of 509 US 9,229,713 B2

lwsize « log(wsize)
if Ywsize+2-Igsize. Iwsize-3 * 0 then
msize « (t and (0-t)) J| 0%
VirtAddr « t and (t-1)
else
raise OperandBoundary
endif
vsize « 2*'msize*gsize/wsize
endcase
case major of
M.MINOR.B:
order « B
M.MINOR.L:
order «— L
endcase
m <« LoadMemory(c,VirtAddr,msize,order)
for i « O to wsize-gsize by gsize
qf0].t « NULL
for j « O to vsize-gsize by gsize
case op of
W.MUL.MAT.F.16, W.MUL.MAT.F.32, W.MUL.MAT.F.64:
qfj+gsize} < fadd(qfj], mul(gsize,m,i+wsize*jg. |gsize.b.j))
W.MUL.MAT.C.F.16, WMUL.MAT.C.F.32, M.MUL.MAT.C.F.64:
if (~i) & j & gsize = 0 then
k « i-(j&gsize)+wsize*jg. igsize+1
glj+gsize] « fadd (qfj], mul{gsize,m k,b,j))
else
K« i+g$ize+WSiZe'j8_Jgsize-}1
qlj+gsize] « fsub(q[j], mul{gsize,m,k,b,}))
endif
endcase
endfor
Zgsize-1+i..i ¢ q[vsize]
endfor
2127..wsize < 0
RegWrite(rd, 128, z)
enddef

FIG. 17G-2

U.S. Patent Jan. 5,2016 Sheet 64 of 509

Operation codes

US 9,229,713 B2

1810
'

W.MUL.MAT.G.8.B [Wide multiply matrix Galois bytes big-endian

W.MUL . MAT.G.8.L Wide multiply matrix Galois bytes little-endian

Selection

class 0 size

order

Multiply matrix Galois | W.MUL. MAT.G 8

Format
W.op.order ra=rc,rd,rb
ra=woparder(rc,rd,rb)

3 24 23 18 17 12 11 6

| W.op.order | rd | re | rb]
8

6 6 6

FIG. 18A

U.S. Patent Jan. 5,2016 Sheet 65 of 509 US 9,229,713 B2

2047 mirc](128128/size)
127
3 ’ 3 y p p i 3 p] p p p
3 r 4 p p p 4 r y p p
; b p r p > b b p 2
4 p 4 p p P p p 4
b 3 3 3 3 3 b] 3 3 3 p b
b 3 b 4 4 . b 4 4 p
b] b]]] 3 3
y p 4 p >] p p p
b | o [3 >
rd(128)
b b 3]
b [1]
p p < p y L
’ b [4 4 b 4
9 L <
b | ¢ 1 b b
4 < 0
A Y 1 L Yy Y y 0
WJEW | \podule/ | \moduie/ I \modvie/ p\rotule/ s \module/ \module/ \module/ ¢
\module/ | \maduls/ |\module /| \mod ule/ |\module/ \module/ |\mod ?l_s? module
)4 3 A A A -
|

[T T 1T T T 1 I
Wide multiply matrix Galois byte

| I T N |

FIG. 18B

U.S. Patent Jan. 5,2016 Sheet 66 of 509 US 9,229,713 B2

Definition ’/ 1860
def c«—PolyMultiply(size,a,b) as
pm].‘_oz'size
for k--—0 to size-1
plk+1]~e—plk] * ay ? (0S'z6|| b]] o) : 02'si20
endfor
¢-=—p[size]
enddef

def c<«—PolyResidue(size,a,b) as
pl0} =—a
for k-e—size-1 to 0 by-1))
pIk-1)=—plk] * pl0size.k 7(052%%|| 1']) b Ok} : 0251z
endfor
¢ ~—p[size]siza.1.0
enddef
def WideMultiplyMatrixGalois{op,gsize,rd,rc,rb,ra)
d-—RegRead(rd, 128)
¢-+—RegRead(rc, 64)
b-e—RegRead(rb,128)
Igsize -—log(gsize)
if Cigsize-4..0 # 0 then
raise AccessDisallowedByVirtualAddress
endif
ifc3 igsize-3# O then
wsize =—(c and (0-c)) || 0*
t-e—c¢ and (c-1)
else
wsize <128
{-—c
endif
Iwsize-e—log(wsize)
if tiwsize+6-1gsize. Iwsize-3# O then
msize-s—(t and (0-1)) || 0*
VirtAddr-e—t and {t-1)
else
msize -—128*wsizelgsize
VitAddr-e—t
endif
case op of
W.MUL.MAT.G.8.8:
order-«—B
W.MUL.MAT.G.8.L:
order <L

endcase FIG. 18C-1

U.S. Patent Jan. 5,2016 Sheet 67 of 509 US 9,229,713 B2

1860
/

m-e—LoadMemory(c, VirtAddr,msize,order)
for i-e—0 wsize-gsize by gsize
q[0}-<— (2"gsize
for j=—0 to vsize-gsize by gsize
k-e—i+wsize’jg_igsize
deU’fgSize)*- qlj] * PolyMultiply(gsize,mk.gsize-1..k ,Gj+gsize-1.)
endfor

agsize-1+..1 <+—PolyResidue(gsize,q[vsize],bgsize-1..0)
endfor

3127, wsizg=+— 0
RegWrite(ra, 128, a)
enddef

FIG. 18C-2

U.S. Patent Jan. 5,2016 Sheet 68 of 509 US 9,229,713 B2

1890

Exceptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 18D

U.S. Patent Jan. 5,2016 Sheet 69 of 509 US 9,229,713 B2

vsize

gsize
wsize

msize = wsize * vsize

spec = base + msize/16 + wsize/16

Wide operand specifier for wide multiply matrix Galois

FIG. 18E

U.S. Patent Jan. 5,2016 Sheet 70 of 509 US 9,229,713 B2

Definition

def ¢ « PolyMultiply(size,a,b) as
p[0] « 02'size
for k « 0 to size-1
plk+1] « pk] * a ? (057K || b || O) : 02'size
endfor
¢ « plsize]
enddef

def ¢ « PolyResidue(size,a,b) as
plsize] « a
for k « size-1to 0 by -1
PIk] < plk+1] * plk+1lsize+k ? (051261 || 11| b || Ok) ; 02'size
endfor

¢ < p[0lsize-1..0
enddef

def WideMultiplyMatrixGalois(op,gsize,rd,rc,rb,ra)

d < RegRead(rd, 128)

¢ « RegRead(rc, 64)

b « RegRead(rb, 128)

Igsize < log(gsize)

if Cigsize-4..0 # O then
raise OperandBoundary

endif

if ¢3. 1gsize-3 # O then
wsize « (c and (0-c)) || 04
t«cand (c-1)

else
raise OperandBoundary

endif

lwsize « log(wsize)

if Ywsize+3-gsize. iwsize-3 # 0 then
msize « (tand (0-1)) |} 04
VirtAddr « tand (t-1)

else

raise OperandBoundary
endif

FIG. 18F-1

U.S. Patent Jan. 5,2016 Sheet 71 of 509 US 9,229,713 B2

case op of
W.MUL MAT.G.8.B:
order « B
W.MUL MAT:G.8.L:
order « L
endcase
m « LoadMemory(c,VirtAddr,msize,order)
fori « 0 to wsize-gsize by gsize
ql0] « 02"gsize
for j « O to vsize-gsize by gsize
k ¢ i+wsize*jg Igsize
qlj+gsize] « qj} * PolyMultiply(gsize,mk+gsize-1. k.dj+gsize-1..j)
endfor
zgsize-1+i.i ¢~ PolyResidue(gsize,qlvsize]bgsize-1..0)
endfor
2127.wsize + 0
RegWrite(ra, 128, z)
enddef

FIG. 18F-2

U.S. Patent Jan. 5,2016 Sheet 72 of 509 US 9,229,713 B2

Qperation codes

E.MUL.ADD.X Ensemble multiply add exiract
E.CON.X Ensemble convolve extract
Format

E.op rd@rc,rb,ra

rd=gop(rd,r¢,rb,ra)

K} 24 23 18 17 12 1

[_E.op 1 1 e T b]
8 6 6

FIG. 19A

U.S. Patent Jan. 5,2016 Sheet 73 of 509 US 9,229,713 B2

1810

31 24 23 16 1514131211109 8 0

| fsize | dpos |x[s|n]m| I]rnd] ssp |
9
8) 71111 2 9

FIG. 198

U.S. Patent Jan. 5,2016 Sheet 74 of 509 US 9,229,713 B2

1930
/‘

127 rc(128) 0
fi ololololo|o!l o'
st ololofo]o]o
| &- , folo|lo]o}|o
¢ + + T ololo]o
B i e rb(128)
¢ + + ¢ I'¥jojolo
®19 cla 10 pr 0})o
slo]lo|d|d|d Feo
v 2 (¢ b | © (1)
ﬁ ‘-.;.'z-'.{} 0
Y h 4 Y J
\extract/ i extrac i\ exlrac ¥ extrac
\extracl/ T\extract/T\extract/ T \extract/
I 2 A

1 1 IV [T T 1]
128 rd(128) 0

Ensemble multiply add extract doublets

FIG. 19C

U.S. Patent Jan. 5,2016 Sheet 75 of 509 US 9,229,713 B2

’/1945

12_7 rc{128) 0

1ojotojojo o |17

“1ololo|lolo]o

o | b ololo|o
o | ¢ e olo]o]|o
2R 6l Tl rb(128)
¢l ol o| o fmlplolo
[[19] (0] D

\ Y Y
1 | I R R

128 rd(128)
Ensemble complex muitiply add extract doublets

This ensemble-multiply-add-extract instructions (E.MUL.ADD.X), when
the x bit is set, multiply the low-order 64 bits of each of the rc and rb
registers and produce extended (double-size) results.

FIG. 19D

U.S. Patent Jan. 5,2016 Sheet 76 of 509 US 9,229,713 B2

1960
’/'

255 rc 1l rd (256 0
A0 RORED RSN IEACH PRI NUrER ORI SN 127
o : : : o
o o} o
o oo
o] (o] 9 {rb
12
o o]o (128)
< olo
[+ o o
% 5|
\) 4

\extract/ | \extrac b axllacy‘ extrac v

\Exlracs/ \exlracy (exltagy \exlracy

) L
T 1 T { i 1 't]
128 rd(128) 0

Ensemble convolve extract doublels

FIG. 19E

U.S. Patent Jan. 5,2016 Sheet 77 of 509 US 9,229,713 B2

/-1975

255 rc i rd (256 0
% 127

o190 trb
(128)

ofo ‘ {ojojlolofo}]o

o | o [#s: Jolojolojole

‘ :;;.. - :.”: ":_': o o o ol o o o
1‘ AHKE -._,:»',;.. / ojojejeojefeleja],

@xl‘ract/ extracl/ IN\extracl/ INextracl !
Nextracl/ [\exiracl/ | \extracl/ | \extracl/

\ \ IR ¥ 9
P 1. 1 1 1 r I 1}

[
128 rd(128) 0

Ensemble convolve extract complexdoublets

FIG. 19F

U.S. Patent Jan. 5,2016 Sheet 78 of 509 US 9,229,713 B2

1990

Definition

def mul(size,h,vs,v,i,ws,w.j) as

mul & ((vs8Vsize-1+)"S28 || Viize-1+1..i) * ((WSBWsize-1+))"5128 || Wsize.1+j.)
enddef

def EnsembleExtractinplace(op,ra,rb,rc,rd) as
d < RegRead(rd, 128)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
a « RegRead(ra, 32)
case ag_g of
0..255:
sgsize « 128
256..383:
sgsize « 64
384..447:
sgsize « 32
448.473:
sgsize « 16
480..495:
sgsize « 8
496..503:
sgsize < 4
504..507:
sgsize « 2
508..511:
sgsize « 1
endcase
P an
m e« aq2
n<« a3
signed « aq4
X «— 315
case op of
E.CON.X:
if (sgsize < 8) or (sgsize*(n+1)*(x+1) > 128) then
raise Reservedinstruction
endif
gsize « sgsize
lgsize « log(gsize)
wsize « 128/(x+1)
vsize « 128

FIG. 19G-1

U.S. Patent Jan. 5,2016 Sheet 79 of 509 US 9,229,713 B2

1990
e«cjld
es « signed
bs « signed *m
ZS « signed ormorn
zsize « gsize*(x+1)
h « (2*gsize) + log(vsize) - Igsize
spos «- (ag, o) and (2*gsize-1)
E.MUL.ADD.X:
if (sgsize < 8) or (sgsize*(n+1)*(x+1) > 128) then
raise Reservedinstruction
endif
gsize « sgsize
wsize « 128/(x+1)
ds « signed
cs « signed *m
2s « signed ormorn
zsize « gsize*(x+1)
h « ((3+x)*gsize) + n
spos + (ag_g) and (2*gsize-1)
endcase
dpos « (0 || a23..1¢) and (zsize-1)
I <~ Spos
sfsize « (0 || a3, 24) and (zsize-1)
tfsize « (sfsize = 0) or ((sfsize+dpos) > zsize) ? zsize-dpos : sfsize
fsize « (ifsize + spos > h+1) ? h+1 - spos : fsize
if (b10..9 = Z) and not zs then
md«F
else
md « b4g. g
endif
for k «- 0 to wsize-zsize by zsize
i «— k*gsizelzsize
case ap of
E.CON.X:
q[0] « Of
for j « 0 to vsize-gsize by gsize
if n then
if (~i) & j & gsize = O then
qli+gsize] « qfj] + mul(gsize,h,es,e,i+128-j,bs,b,j)
else
qli+gsize] « qf]] - mul(gsize,h,es,e,i+128-j+2*gsize,bs,b j)
endif
else
qlj+gsize] < qfj] + mul(gsize,h,es,e,i+128-j,bs,b,j)
endif
endfor
p « qvsize]

FIG. 19G-2

U.S. Patent Jan. 5,2016 Sheet 80 of 509 US 9,229,713 B2

1990
E.MUL ADD.X:
di « ((ds and dy+dpos+size-1)" 2 7||(dk+dpos+size-1. k+dposIO7)
if n then
if (i and gsize) = 0 then
p«mul(gsize,h,ds,d,i,cs,c,i)-mul(gsize,h,ds,d,i+gsize cs,c i+gsize)+di

else
p(—mul(g/size,h,ds,d,i-gsize,cs,c,i)+mul(gsize,h,ds,d,i,cs,c,i-gsize)+di
endif
else
p « mul(gsize,h,ds,d,i,cs,c,i) + di
endif
endcase
case rnd of
N;
s« 00 |[pr || ~p!
Z:
s« 0P | p.q
F. :
s« ob
C:
s« QP 1r
endcase

vV <« ((zs & ph-1)lip) + (Ojis)
if (Vh..r+fsize = (ZS & Vrsisize-1)M17-152€) or not 1 then
W (Zs & Vrifsize-1)zsize-fsize-dp O5 || visize-1+4r..r I odpos
else
W (z8? (Vﬁsize-fsize-dposﬂ"._vLsize-‘l) . gzsize-fsize-dp05||1fsize) i gdpos
endif
Zzsize-1+k.k W
endfor
RegWrite(rd, 128, z)
enddef

FIG. 19G-3

U.S. Patent Jan. 5,2016 Sheet 81 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

FIG. 19H

U.S. Patent Jan. 5,2016 Sheet 82 of 509 US 9,229,713 B2

2010
y

Qperation codes

E.MUL.X Ensemble multiply extract
E.EXTRACT Ensemble extract
E.SCAL.ADD.X Ensemble scale and extract
Format

E.op ra=rd,re,tb

ra=eop{rd,rc,rb)

31 24 23 18 17 12 1

| E.op | rd I rc | rb I ra 1
8 6 6

FIG. 20A

U.S. Patent Jan. 5,2016 Sheet 83 of 509 US 9,229,713 B2

2015

31 24 23 16 1514131211109 8 0
| fsize | dpos Ix|s[nlmft|rnd] gssp |
8 8 t1111 2 9

FIG. 20B

U.S. Patent Jan. 5,2016 Sheet 84 of 509 US 9,229,713 B2

2020
/—

127 rd(128) 0
‘9lololololofolo 127
9| ®lolojolo]o]fo
ol dlelololofolo
¢ L1 clojo}o
— rc{128)
ol | 9 tejojo]o
1ol o| o2 dle]lolo
bl dla T o
| &1 d ¢ | &
P | 0
Y ¥ Y
exiract . \extracy! exlracyviextracg/‘
\extracl/ | \extracy/ | \exirac extrac

4 I 1 T 1 1 1
128 ra(128) 0

FIG. 20C

U.S. Patent Jan. 5,2016 Sheet 85 of 509 US 9,229,713 B2

127 rd(128) 0
‘&) Hjo|ololo|lo]o 127
« A cjololo]o
) olo|o}|o
¢ |9 clolo}o
= rc{128)
ol o ‘-l o] o
olaloledtNlo]o
pidlolo]|ela _
9 o] o | 0
A L Y \
\extracl/’s Nextracl/ P \extracl/ INextracl/ |
\extracl/ | \extracl/ | \extracl/ | \extract/
Y ¥ Y ¥ ¥ ¥ 9
1 | T T | }
128 ra(128) 0

Ensemble complex mulliply extract doublets

This ensemble-multiply-extract instructions (E.MUL.X), when
the x bit is set, multiply the low-order 64 bits of each of the rc and 1b
registers and produce extended (double-size) results.

FIG. 20D

U.S. Patent Jan. 5,2016 Sheet 86 of 509 US 9,229,713 B2

2040
'/'
127 rd(128) 0
85
IMRARARARARSREREF
127 rc(128) 079 rb(128)
' t ? |9 i y
\extr'act/ &Txttac;/ th;act/ Nextract/ |
l\extrac /1\extracy \extract/ l\axtracg/
Y

| N A I
128 ra(128) 0

Ensemble scale add extract doublets

FIG. 20E

U.S. Patent Jan. 5,2016 Sheet 87 of 509 US 9,229,713 B2

2050
/‘

127 rd(128) 0
127
96
127&2 !(128 g rb(128)
95
64

Y

y {
extracl7"@mac;7‘ \extracl/ [Nexiract/ |
Nexiract/ | \extracl/ | \extracl/ | \exiract/

" 1 { 1 } A
t)| | I N | 1 1 |
128 ra{128) 0

Ensemble complex scale add extract doublets

The ensemble-scale-add-extract instructions (E.SCLADD.X), when the x bit
is set, multiply the low-order 64 bits of each of the rd and re registers by the
rb register fields and produce extended (double-size) results.

FIG. 20F

U.S. Patent

Jan. 5, 2016 Sheet 88 of 509 US 9,229,713 B2
'/- 2060
fsize ~ spoc
st rd rdirc
P 2' gsize .
B [__gsize \ .
S ab 0 a
fsize dpos

- -

Ensemble extract

FIG. 20G

U.S. Patent Jan. 5,2016 Sheet 89 of 509 US 9,229,713 B2

2070
-
fsize spoc
Yot
st rd
) gsize . -

re

b a b ra

{size < JP0s

Ensemble merge extract

FIG. 20H

U.S. Patent Jan. 5,2016 Sheet 90 of 509 US 9,229,713 B2

2080
/’
fsize Spos
-t
st | rd rd
- gsize -~
S a 0 ra

fsize . dpos

Ensemble expand extract

FIG. 201

U.S. Patent Jan. 5,2016 Sheet 91 of 509 US 9,229,713 B2

Definition ‘ _ ,...2090
def mul(size,h,vs,v.i,ws,w,j} as '

mube— ((vS&Vsize.1+i -Size|| vsizg-14i.i) * ((WS&Wsize-h-i)h‘s'zeuwsize.t.j,_j)
enddef

def EnsembleExtract(op,ra,rb,rcrd) as
d-=—RegRead(rd, 128)
c-+—RegRead(rc, 128)
b-e-RegReadirb, 128)
case bg_o of
0..255:
sgsize-e—128
256..383:
sgsize--—564
384..447:
sgsize 32
448.479:
sgsize <16
480..495:
sgsize-+§
496..503:
sgsize-e—4
504..507:
sgsize <2
508..511:
sgsize <—1
endcase
b1
M-— 02
n-<—by3
signed-e—h4
X -+g
case op of
E.EXTRACT:
gsize -~ sgsize*2(2-(m or x))
2size<— sgsize
h - gsize
as = signed
spos-e— (bg._o) and (gsize-1)

FIG. 20J-1

U.S. Patent

Jan. 5, 2016 Sheet 92 of 509

E.SCAL.ADD.X:

if (sgsize < 8) then
gsize -8
elseif (sgsize*(n+1) > 32) then
gsize - 32/(n+1)
else
gsize - sgsize
endif
ds-=— ¢S signed
bs = signed A m
as-e—signed ormorn
Zsize ~e—gsize*(x+1)
h - (2"gsize} +1 +n
$pos -—(bg o) and (2*gsize-1)

E.MUL.X:

endcase

if (sgsize < 8) then
gsize <8
elseif (sgsize*(n+1)*(x+1) > 128) then
gsize <— 128/(n+1)/(x+1)
else
gsize «— sgsize
endif
Us -=—signed
cs -« signed * m
as ——signed or m or n
zsize —e—gsize*(x+1)
h < (2%gsize) +n
spos -+ (bg_0) and (2*gsize-1)

dpos - (0]} baa_ 1) and (zsize-1)

I ~-—Spos

sfsize - (0{| b31..24) and (zsize-1)
tIsize < (sfsize =0) or ((sfsize+dpos) > zsize) ? zsize-dpos : sfsize
fsize - (tfsize + spos > h) 7 h - spos : tisize
if (b19..9=Z) and not as then

md --F

else

md<b

endif

FIG. 204-2

US 9,229,713 B2

2090

U.S. Patent Jan. 5,2016 Sheet 93 of 509 US 9,229,713 B2

for j-— O to 128-zsize by zsize 2090
i~ *gsize/zsize
case op of
E.EXTRACT:
if m or x then
p e dgsize«i-1..i
else
p e (d} c)gsize-i-1..i
endif
E.MUL.X:
if n then
if (i and gsize) = 0 then
p +—mul{gsize h,ds,d,i,cs,c.i)-
mul{gsize,h,ds,d,i+gsize cs,c,i+gsize)
else
pe
mul(gsize,h,ds,d,i,cs,c,i+gsize)+mul(gsize,h,ds,d,i,cs,c,i+gsize)
endif
else
p -+ mul{gsize,h,ds,d.i,cs,c,i)
endif
E.SCAL.ADD.X:
it n then
if (i and gsize) = 0 then
p - mui(gsize,h,ds,d,i,bs,b,64+2*gsize)
+ mul(gsize,h,cs,c,i,bs,b,64)
- mul(gsize,h,ds d,i+gsize,bs,b,64+3%gsize)
- mul(gsize,h,cs,c,i+gsize,bs,b,64+gsize)
else
p ~e—mul(gsize,h,ds,d,i,bs,b,64+3gsize)
+ mul{gsize,h,cs,c,i,bs,b,64+gsize)
+ mul(gsize,h,ds,d i+gsize,bs,b,84+2"gsize)
+ mul(gsize,h,cs,c,i+gsize,bs,b,64)
endif
else
p-=— mul{gsize,h,ds,d,i,bs,b,64+gsize) + mul(gsize
h,es,c.ibs,b,64)
endif
endcase

FIG. 20J-3

U.S. Patent Jan. 5,2016 Sheet 94 of 509 US 9,229,713 B2

case rngd of
s &~ 0|l ~pg| pt-?

s=—0""lpf
F:
s Q"

et i ad| BT

endcase

v ~<((as & pn.y)lip) + (0lls) ,
if (Vh..refsize= (3$ & Vraisiza-1)P+1--5120) or not (I and {op =
E.EXTRACT)) then
w - (as & v",sizp1)zsize-fsize-dpos‘|vf siza-1+r. '" odpos
else '
w = (s ? (vpl| -vﬁsiza-dposJ) . 1zsize-dpos) I gdpos
endif

if m and (op = E.EXTRACT) then

225i20-1+]..j = Casize-1+]..dpos+Isize+i|| Wdpossfsize-1..dpos||
Cdpos-1+..j
else
125i20-14).. W
endif

endfor

RegWrite(ra, 128, 2)
enddef

FIG. 20J-4

U.S. Patent Jan. 5,2016 Sheet 95 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

FIG. 20K

U.S. Patent Jan. 5,2016 Sheet 96 of 509 US 9,229,713 B2

Definition

def mul(size,h,vs,v,i,ws,w,) as

mul « ((vs&Vsize-1+)"S12¢ || Vsize-14i..) * ((WS&Wsize-h‘j)h'Size If wsize-1+4..j)
enddef

def EnsembleExtract(op,ra,rb,rc,rd) as
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
case bg_ g of
0..255:
sgsize « 128
256..383:
sgsize « 64
384.447:
sgsize « 32
448..479:
sgsize « 16
480..495:
sgsize « 8
496..503:
sgsize « 4
504..507:
sgsize « 2
508..511:
sgsize « 1
endcase
|« by
m « bq2
N« b3
signed « b4
X<« bis
case op of
E.EXTRACT:
gsize « sgsize*(2-(m or x))
zsize < sgsize
h « gsize
zs « signed
spos « (bg, o) and (gsize-1)
E.SCAL.ADD.X:
if (sgsize < 8) or (sgsize*(n+1) > 32) then
raise Reservedinstruction
endif
gsize « sgsize

FIG. 20L-1

U.S. Patent Jan. 5,2016 Sheet 97 of 509

ds « ¢s « signed

bs « signed * m

Zs « signed ormorn

zsize « gsize*(x+1)

h « (2*gsize)+ 1 +n

spos « (bg_g) and (2*gsize-1)

E.MUL.X:

endcase

if (sgsize < 8) or (sgsize*(n+1)*(x+1) > 128) then
raise Reservedinstruction

endif

gsize « sgsize

ds « signed

cs « signed * m

2s « signed ormorn

zsize « gsize*(x+1)

h « (2*gsize) + n

spos <« (bg_g) and ((2*gsize)-1)

dpos « (0 || bo3_15) and (zsize-1)

r < spos

sfsize « (0 || b31..24) and (zsize-1)

tfsize «- (sfsize = 0) or ((sfsize+dpos) > zsize) ? (zsize - dpos) : sfsize

fsize « ((tfsize + spos) > (h+1)) ? (h + 1 - spos) : ffsize

if (b10..9 =

Z) and not zs then

md «F

else

md « b1g. 9

endif

for j « O to 128-zsize by zsize
i « j*gsize/zsize
case op of

E.EXTRACT:
if m or x then
P < Cgsize+i-1..i
else
p « (c || digsize+i-1..i
endif
E.MUL.X:
if n then
if (i and gsize) = 0 then

US 9,229,713 B2

p « mul(gsize,h,ds,d,i,cs,c,i}-mul(gsize,h,ds,d,i+gsize,cs,c,i+gsize)

else

p « mul(gsize,h,ds,d,i-gsize,cs,¢,itmul(gsize, h,ds,d,i,cs,c,i-gsize)

endif
else
p <« mul(gsize,h,ds,d,i,cs,c.i}
endif
E.SCAL.ADD.X:
if n then

FIG. 20L-2

U.S. Patent Jan. 5,2016 Sheet 98 of 509 US 9,229,713 B2

if (i and gsize) = 0 then
p « mul(gsize,h,cs,c,i,bs,b,64+2*gsize)
+ mul(gsize,h,ds,d,i,bs,b,64)
- mul(gsize,h,cs,c,itgsize,bs,b,64+3*gsize)
- mul(gsize,h,ds,d,i+gsize,bs,b,64+gsize)

else
p « mul(gsize,h,cs,c,i,bs,b,64+3*gsize)
+ mul(gsize,h,ds,d,i,bs,b,64+gsize)
+ mul(gsize,h,cs,c,i-gsize,bs,b,64+2*gsize)
+ mul(gsize,h,ds,d,i-gsize,bs,b,64)
endif
else
p < mul(gsize,h,cs,c,i,bs,b,64+gsize) + mul(gsize,h,ds,d,i,bs,b,64)
endif
endcase
case rnd of
N:
s « Oh || p; || ~pf!
Z
s « M| ph.q
F:
s «0h
C:
s e oh 1
endcase

v « ((zs & pn-1)llp) + (Olls)
if (Vh..rfsize = (25 & Vr+size-1)"17-5128) or not | then
W <= (25 & Vrafsize-1)Z5126-15126-0D0S || vygip0 44 (|| 09POS
else
W (257 (Vﬁsize-fsize-dposﬂ”..Vksize-1) . Ozsize-fsize-dpos“1fsize) I odpos
endif
if mand (op = E.EXTRACT) then
Zzsize-14j..j < Ozsize-1+j..dpos+isize+j || Wdpos+fsize-1..dpos || ddpos-1+j.j
else
Zzsize-1+j..j ¢« W
endif
endfor
RegWrite(ra, 128, z)
enddef

FIG. 20L-3

U.S. Patent Jan. 5,2016 Sheet 99 of 509 US 9,229,713 B2

1rc=1 r3wlx2q3
J rb=0 code
// Yd=0§ =
[/ Teciipt
Z w2 x3 g0
gate / 2
datap ~———— | r2w2x3gl
data

Gateway with pointers to code and data spaces

FIG. 21A

U.S. Patent Jan. 5,2016 Sheet 100 of 509 US 9,229,713 B2

2130
'/'

Typical dynamic-linked, inter-gateway calling sequence:

caller:
caller AA.DDI sp@-size /I atlocate caller stack frame
S.1.64.A Ip,sp,off
S.1.64.A dp.sp.oit
L.1.64.A ip=dp,off i foad Ip
L.1.64.A dp=dp,off Il load dp
B.GATE
L.1L64.A dp,sp,off
...{code using dp)
L.1.64.A lp=sp,off Il restore original Ip register
A.ADDI sp=size /I deallocate caller stack frame
B8 Ip il return

callee {non-leaf):

calee: L.L64.A dp=dp,off il load dp with data pointer
S.1.64.A sp.dp,off
L.I.64.A sp=dp,off /I new stack pointer
S.1.64.A ip,sp,off
S.1.L64.A dp,sp,off
...{using dp)
L.I.64.A dp,sp,off
...{(code using dp)
L.1.64.A Ip=sp,off I} restore original 1p register
L.I1.64.A sp=sp,off Il restore original sp register
B.DOWN Ip

callee (leak, no stack):

callee: ...(using dp)
B.DOWN Ip

FIG. 21B

U.S. Patent Jan. 5,2016 Sheet 101 of 509 US 9,229,713 B2

2160
y

Operation codes
| B.GATE | Branch gateway J

Equivalencies
[B.GATE <— B.GATEQ |

Format
8.GATE rb
bgate{rd)

31 24 23 18 17 12 11 6 5 0
[BMNOR | 0 [1 [| B.GATE]
8 6 § 6 6

FIG. 21C

U.S. Patent Jan. 5,2016 Sheet 102 of 509 US 9,229,713 B2

17
’,-2 0

1L°=1 r3wldx2qd
/'b=0 code
/j rd:oi =
[Tocjppt!
r2 w2 x3 g0
gate / 2
datap ——___| - 12w2x3 g3
data

Branch gateway

FIG. 21D

U.S. Patent Jan. 5,2016 Sheet 103 of 509 US 9,229,713 B2

Definition

def BranchGateway(rd,rc,rb) as
¢ « RegRead(rc, 64)
b « RegRead(rb, 64)
if (rd < 0) or (rc = 1) then

raise Reservedinstruction
endif

if c2. 0 # 0 then

raise AccessDisallowedByVirtualAddress
endif
d « ProgramCounterg3_2+1 {| PrivilegeLevel
if PrivilegeLevel < by_g then

m « LoadMemoryG(c,c.64,1)

if b = m then

raise GatewayDisaliowed
endif

PrivilegeLevel « by g
endif
ProgramCounter « bg3_2 || 02
RegWrite(rd, 64, d)
raise TakenBranch
enddef

FIG. 21E

U.S. Patent Jan. 5,2016 Sheet 104 of 509 US 9,229,713 B2

2199
4

Exceptions

Reserved Instruction

Gateway disallowed

Access disallowed by virtual address
Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local T8

Access detail required by global TB
Local TB miss

Global T8 miss

FIG. 21F

U.S. Patent Jan. 5,2016 Sheet 105 of 509 US 9,229,713 B2

Definition

def BranchGateway(rd,rc,rb) as
¢ < RegRead(rc, 64)
b < RegRead(rb, 64)
if (rd # 0) or (rc = 1) then
raise Reservedinstruction
endif
if co_ o= 0 then
raise OperandBoundary
endif
z « ProgramCounterg3_2+1 || PrivilegeLevel
if PrivilegeLevel < bq_g then
m « LoadMemoryG(c,c,64,L)
if b = m then
raise GatewayDisallowed
endif
PrivilegeLevel <~ b1 g
endif
ProgramCounter « bg3_2 || 02
RegWrite(rd, 64, z)
raise TakenBranch
enddef

FiG. 21G

U.S. Patent Jan. 5,2016 Sheet 106 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

Gateway disallowed

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 21H

U.S. Patent

Jan. 5, 2016 Sheet 107 of 509 US 9,229,713 B2
- 2210
Operation codes
E.SCAL.ADD.F.16 Ensemble scale add floating-point half
E.SCAL.ADD.F.32 Ensemble scale add floating-point single
E.SCALADD.F.64 Ensemble scale add floating-point double
Selection
class op prec
scale add E.SCAL.ADD.F |16 32 64
Fomat
E.op.prec ra=¢d.rc,rb
ra=eopprec(rd rc,rb)
] 24 23 18 17 12 1 65 o
[Eopprec | rd | rc | b | ra |
8 6 6 3 6 ‘

FIG. 22A

U.S. Patent Jan. 5,2016 Sheet 108 of 509 US 9,229,713 B2

2230

Definition

def EnsembleFloatingPointTernary(op,prec,rd,rc,rb,ra) as
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
for i « 0 to 128-prec by prec
-di < F(prec,di+prec-1..4)
¢l < F(prec,Ci+prec-1..1)
Zi « fadd(fmul(di, F(prec,bprec-1..0)), fmul(ci, F(prec,ba*prec-1..prec)))
Zi+prec-1..i « PackF(prec, zi, none)
endfor
RegWrite(ra, 128, z)
enddef

FIG. 22B

U.S. Patent Jan. 5,2016 Sheet 109 of 509 US 9,229,713 B2

Exceptions

none

FIG. 22C

U.S. Patent Jan. 5,2016

Sheet 110 of 509 US 9,229,713 B2

Operation codes
1 G.BOOLEAN | Group boolean)
Selection

operation function (binary) function (decimal)

d 11110000 240

c 11001100 204

b 10101010 176

d&céb 10000000 128

(d&c)|b 11101010 234

diclb 11111110 254

d?¢:b 11001010 202

grctb 10010110 150

~d*c*b 01101001 105

0 00000000 0
Format
G.BOOLEAN rd@trc,trb.f
rd=gbooleani(rd,rc.rb,f)

3 252423 18 17 12 1 65 0
[GBOOLEAN [ih] rd | e | b |l |
7 1 6 6 6 6

FIG. 23A

U.S. Patent

Jan. 5§, 2016

Sheet 111 of 509

Operation codes

US 9,229,713 B2

2310

| G.BOOLEAN | Group boolean |
Equivalencies

G.AAAND Group three-way and bif§
G.AAA.01 Group add add add bits
G.AAS.001 Group add add subtract bits
G.ADD.01 Group add bits
G.AND Group and
G.ANDN Group and not
G.COPY Group copy
G.NAAAND Group three-way nand
G.NAND Group nand
G.NOOOR Group three-way nor
G.NOR Group nor
G.NOT Group hot
G.NXXXOR Group three-way exclusive-nor
G.O00R Group three-way or
G.OR Groupor
G.ORN Group or not
G.SAA.001 Group subtract add add bits
G.SAS.001 Group subtract add subtract bits
G.SET Group set
G.SET.AND.E.001 Group set and equal zero bits
G.SET.AND.NE.QO1 Group set and not equal zero bits
G.SET.E.001 Group set equal bits
G.SET.G.01 Group set greater signed bits
G.SET.G.U.01 Group set greater unsigned bits
G.SET.G.Z.01 Group set greater zero signed bits
G.SET.GE.01 Group set greater equal signed bits
G.SET.GE.Z.01 Group set greater equal zero signed bits
G.SET.L.01 Group set less signed bits
G.SET.L.2.01 Group set less zero signed bits
G.SET.LE.O1 Group set less equal signed bits
G.SET.LE.U.01 Group set less equal unsigned bits

FIG. 23A-1

U.S. Patent Jan. 5,2016 Sheet 112 of 509 US 9,229,713 B2
2310
G.SET.LE.Z.01 Group set less equal zero signed bits
G.SET.NE.001 Group set not equal bits
G.SET.GE.U.01 Group set greater equal unsigned bits
G.SET.L.U.01 Group set less unsigned bits
G.SSA.001 Group subtract subtract add bits
G.SSS.001 Group subtract subtract subtract bits
G.SUB.01 Group subtract bits
G.XNOR Group exclusive-nor
G.XOR Group exclusive-or
G.XXXOR Group three-way exclusive-or
G.ZERO Group zero
G.AAAND rd@re,rb G.BOOLEAN rd@rc,rb,0b10000000
G.AAA.1 rd@re,rb G.XXXOR rd@rc,b
G.AAS. 1 rd@rc,rb G.XXXOR rd@rc,rb
G.ADD.01 rd=rc,rb G.XOR rd=rc,rb

G.AND rd=rc,rb

G.BOOLEAN rd@rc,rb,0b10001000

G.ANDN rd=rc,rb

G.BOOLEAN rd@rc,rb,0b01000100

G.BOOLEAN rd@rb,rc,i

G.COPY rd=rc

G.BOOLEAN rd@rc,rc,0b10001000

G.NAAAND. rd@rc,rb

G.BOOLEAN rd@rc,rb,0b01111111

G.NAND rd=rc,rb

G.BOOLEAN rd@rc,rb,0b01110111

G.NOOOR rd@rc,rb G.BOOLEAN rd@rc,rb,0b00000001
G.NOR rd=rc,rb G.BOOLEAN rd@rc,rb,0b00010001
G.NOT rd=rc G.BOOLEAN rd@rc,rc,0b00010001
G.NXXX rd@rc,rb G.BOOLEAN rd@re,rb,0b01101001
G.OOOR rd@trc,rb G.BOOLEAN rd@rc,rb,0b11111110
G.OR rd=rc,rb G.BOOLEAN rd@rc,rb,0b11101110

G.ORN rd=re,rb

G.BOOLEAN rd@re,rb,0b11011101

G.SAA.1 rd@rc,rb

G.XXXOR rd@rc,rb

G.SAS.1 rd@rc,rb

G.XXXOR rd@rc,rb

G.SET rd

G.BOOLEAN rd@rd,rd,0b10000001

G.SET.AND.E.001 rd=rb,rc

G.NAND rd=rc,rb

G.SET.AND.NE.OO1 rd=rb,rc

G.AND rd=rc,rb

G.SET.E.001 rd=rb,rc

G.XNOR rd=rc,rb

G.SET.G.01 rd=rb,rc

G.ANDN rd=rc,rb

G.SET.G.U.01 rd=rb,rc

INHRERITRErrr it

G.ANDN rd=rb,rc

FIG.

23A-2

U.S. Patent Jan. 5,2016 Sheet 113 of 509 US 9,229,713 B2
2310
G.SET.G.Z.01 rd=rc - G.ZEROrd
G.SET.GE.O1 rd=rb,rc — G.ORN rd=rc,ib
G.SET.GE.Z.07 rd=rc — G.NOT rd=rc
G.SET.L.01 rd=rb,rc — G.ANDN rd=rb,rc
G.SET.L.Z.01 rd=rc — G.COPY rd=rc
G.SET.LE.01 rd=rb,rc — G.ORN rd=rb,rc
G.SET.LE.U.01 rd=rb,rc — G.ORN rd=rc,rb
G.SET.LE.Z.01 rd=rc - G.SETdd
G.SET.NE.001 rd=rb,rc — G.XOR rd=rc,rb
G.SET.GE.U.01 rd=rb,rc — G.ORN rd=rb,rc
G.SET.L.U.01 rd=rb,rc — G.ANDN rd=rc,rb
G.SSA.1 rd@rc,rb — G.XXXOR rd@rc,rb
G.SSS.1 rd@rc,rb — G.XXXOR rd@rc,rb
G.SUB.01 rd=rc,rb - G.XOR rd=rc,rb
G.XNOR rd=rc,rb <« G.BOOLEAN rd@rc,rb,0b10011001
G.XOR rd=rc,rb « G.BOOLEAN rd@rc,rb,0b01100110
G.XXXOR rd@rc,rb « G.BOOLEAN rd@rc,rb,0b10010110
G.ZEROrd +« G.BOOLEAN rd@rd,rd,0b00000000
Selection

operation function (binary) function (decimal)

d 11110000 240

c 11001100 204

b 10101010 176

d&c&b 10000000 128

(d&c)b 11101010 234

diclb 11111110 254

d?cb 11001010 202

d*c"b 10010110 150

~gd crh 01101001 1105

0 00000000 0

Format
G.BOOLEAN rd@trc, trb,f
rd=gbooleani{rd,rc,rb,f)
31 252423 18 17 12 11 65 0
| G.BOOLEAN Jih] rd | rc | b | il |
7 1 6 6 6 6
FIG. 23A-3

U.S. Patent

Jan. 5, 2016 Sheet 114 of 509

if fg=fg then

else

endif

if fo=f4 then
if f2 then

rc « max(trc,irb)
O « min(trc trb)
else
rc < min(tre,trb)
b « max(tre,trb)
endif
ihe0
le-Clifslifzilfalifallifo
else
if f2 then

rc « trb
rb « trc
clse
rc « trc
b « trb
endif
ih«20
e 11 fall 71l fa 1 f3 1) fo
endif

i « 1
if fg then

rc « trb

b« trc

il F1 (L2117 1l fa 1l F3 4] Fo
else

rc « trc

b « trb

le—fallfalifzllfallf3llfo
endif

FiG. 238

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 115 of 509 US 9,229,713 B2

Definition

def GroupBoolean (ih,rd,rc,rb,il)
d « RegRead(rd, 128)
c « RegRead(rc, 128)
b « RegRead(rb, 128)
if ih=0 then
if ils=0 then

fe—iig il 1lilg 102 1L il4 |] (re>rb)2 | o
else
feilgfilalltatfilzfila HONA Hlilg
endif
else
feilg || Off 11l }ily) ils || ilg |l ilp
endif
fori « 0 to 127 by size
3 < kajisib)
endfor
RegWrite(rd, 128, a)
enddef

FIG. 23C

U.S. Patent Jan. 5,2016 Sheet 116 of 509 US 9,229,713 B2

Definition

def GroupBoolean (ih,rd,rc,rb,il)
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
if ih=0 then
if i15=0 then
feilz{lilg || ilg |} itz [} ilg | (re>rb)? [ilo
else
feilz|lilgflilg |lii2 I HIONN 111 iko
endif
else
feilg {01211 | ils]} ila |l ilo
endif
for i « O to 127 by size
Zi < f(gjl|cilib;)
endfor
RegWrite(rd, 128, z})
enddef

FIG. 23D

U.S. Patent Jan. 5,2016 Sheet 117 of 509 US 9,229,713 B2

Exceptions

none

FIG. 23E

U.S. Patent Jan. 5,2016 Sheet 118 of 509 US 9,229,713 B2

Operation codes
| B.HINT | Branch Hint]

Fomat

B.HINT badd,count,rd

bhint(badd,count,rd)

31 24 23 18 17 12 11 65 0

| BMINOR | rd | count | simm | B.HINT |
8 6 8 6 6

simm « badd-pc-4

FIG. 24A

U.S. Patent Jan. 5,2016 Sheet 119 of 509 US 9,229,713 B2

2430

Definition

def BranchHint(rd,count,simm) as
d < RegRead(rd, 64)
if (dq_g) = O then
raise OperandBoundary
endif
FetchHint(ProgramCounter +4 + (0 || simm || 02), dg3_ 2 |1 02, count)
enddef

FIG. 24B

U.S. Patent Jan. 5,2016 Sheet 120 of 509 US 9,229,713 B2

2460

Exceptions

Operand Boundary

FIG. 24C

U.S. Patent

Operation codes

Jan. 5, 2016 Sheet 121 of 509

(- 2510

E.SINK.F.16 Ensemble convert floating-point doublets from haif nearest default
E.SINK.F.16C Ensembls convest floating-point doudlets from half ceiling
E.SINK.F.16.C.D__| Ensemble convert floating-point doublets fsom half ceiling default
E_SINK.F.16.F Ensemble convert floating-point doublets from half floor
E.SINK.F.16.F.D

Ensemble convert floating-point doublets from half floor default

E.SINK.F.16.N Ensemble convert floating-point doublats from half nearest
E.SINK.F.16.X Ensemble convert floating-point doublets from half exact
E.SINK.F.16.Z Ensemble convert floating-point doublets from half zero
E.SINK.F.156.2.0 | Ensemble convert floating-point doublets from half zero default
E.SINK.F.32 Ensemble convert floating-point quadiets from single nearest defavit
E.SINK.F.32.C Ensemble convert floating-point quadlets from single ceiling
E.SINK.F.32.C.D [Ensemble convert floating-point quadiets from single ceiling default.
E.SINK.F.32.F Ensemble convert floating-point quadlets from single floor
E.SINK.F.32.F.0 | Ensemble convert floating-point quadlets from single floor default
E.SINK.F.32.N Ensembie convert floating-point quadiets from single nearest
E.SINK.F.32.X Ensemble convert floating-point quadlets from single exact
E.SINK.F.32.Z Ensemble convent floating-point quadtets from single zero
E.SINK.F.32.2.D0 | Ensemble convert Roating-point quadiets from single zero defauit
E.SINK.F.64 Ensemble convert floating-point ocllets from double nearest default
E.SINK.F.64.C Ensemble convert floating-point octlets from double ceiling
E.SINK.F 64.C.0 |Ensemble convert ficating-point octiets from double ceiling defauit
E.SINK.F.64.F Ensemble convert flaating-point octlets from double floor -
E.SINK.F.64.F.D |Ensemble convert floating-point octlets from double floor defauit
E.SINK.F.64.N Ensemble convert floating-point octlets from double nearest
£.SINK.F.64.X Ensemble convert floating-point octiets from double exact
E.SINK.F.64.Z Ensemble convert floating-point octiets from double zeso
E.SINK.F.64.Z.0 | Ensemble convert floating-point octiets from double zero defauit
E.SINK.F.128 Ensemble conven floating-point hexiet from quad neargst default
£.SINK.F.128.C Ensemble convert floating-peint hexiet from quad ceiling
E.SINK.F.128.C.D | Ensemble convert floating-peint hexlet from quad ceiling default

| E.SINK.F.128.F Ensemble convert floating-point hexlet from quad fioor
E.SINK.F.128.F.0 | Ensembte convert floating-point hexlet from quad floor defauit
E.SINK.F.128.N Ensemble convert floating-point hextet {rom quad nearest
E.GINK.F.128.X | Ensemble convert floating-peint hexlet from quad exact

| E.SINK.F.128.2 Ensemble convert floating-point hexlet from quad zero
E.SINK.F.128.2.0

Ensemble convert floating-point hexlet from quad zero default

FIG. 25A-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 122 of 509 US 9,229,713 B2

P 2510
Selection
op prec round/trap
integer from float SINK 16 32 64 128 InomeCFNXZCD
F.DZD
Format
E_SINK F.prec.md rd=rc
rd=esinkfprecmd(rc)
31 4 23 18 17 12 11 65 0
| E.prec | rd | re |ESINKF.rnd| E.UNARY |
8 6 6 6 6

FIG. 25A-2

U.S. Patent Jan. 5,2016 Sheet 123 of 509

’/' 2530

Definition
def EnsemleSinkFloatingPoint(prec,round,rd,rc) as
c--—RegRead(rc, 128)
for i~e—0Q to 128-prec by prec
ci~—F(prec Cisprec-1..i)
Ajaprec-1.. <+—fsinkr(prec, ci, round)
endfor
RegWritelrd, 128, aj
enddef

FIG. 258

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 124 of 509 US 9,229,713 B2

Exceptions
Floating-point arithmetic

FIG. 25C

U.S. Patent Jan. 5,2016 Sheet 125 of 509 US 9,229,713 B2

Definition r/— 2570
def eb -~ ebits(prec) as
case pref of
16:
eb-5
2
eb -8
64:
eb 11
128:
eb--15
endcase
enddef

def eb -« ebias(prec)as
eb - 0“ 1ebits{prec)-1
endde!f

def fb - fbits(prec) as
fbe-prec-1-eb
enddef

def a - F(prec, ai) as
a.§ - aip[ec.1
ae -« 3iprec-2..fils(ptac)

af - 3ifbil§(prec)-1,.0
if ae = 1ebils(prec) then

if af = 0 then
a.t < INFINITY
elseif afmits(precy-1 then
a.t <+-SNaN
a.e - -fbits{prec)

a.f <1} almits(prec)-1..0
else

a.t «-QNaN
a.e - -fbits(prec)
a.f --af
endif
elseif ae = 0 then
if af = 0 then
a.t<-ZERO

FIG. 25D-1

U.S. Patent Jan. 5,2016 Sheet 126 of 509

else
a.l-— NORM
a.e -« 1.ebias(pec)-foits(prac)
a.f -0l af
endif
else
a.t «--NORM
a.e -~ ae-ebias(prec)-fbits(prec)
a.f <=1{| af
endif
enddef

def a - DEFAULTQNAN sas
a.s<+0(
a.t <+-QNAN
a.e---1i
a.f -1
endder

def a <« DEFAULTSNAN as
3.5 0
a.t <+ SNAN
a.e --1
a.f -1
enddef

FIG. 25D-2

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 127 of 509 US 9,229,713 B2

’/— 2570

def fadd(a.b) as faddr(a,b,N) endder

def ¢ -~ faddr(a,b,round) as
if 3.t=NORM and b.t=NORM then
/1 'd,e are a,b with exponent aligned and fraction adjusted
if a.e > b.e then
d -2
e.t--bt
e.s5<bs
ee-+3ae
e.f --pf]} paede
eise if a.e < b.e then
dtwat
ds =2as
de--be
d.f <-af]] gbe-ae
e Db
endif
c.t --d.t
c.e --de
if d.s = e.s then
C.§ --ds
c.fwdf+elf
elseif d.f > e.f then
C.5 =g
cf - df-ef
elseif d.f < e.f then
C.S -@5
cfeef-df
else
C.S ~-r=F
¢.t --ZERO
endif

FIG. 25D-3

U.S. Patent Jan. 5,2016 Sheet 128 of 509 US 9,229,713 B2

2510
i1 priority is given 10 be operand for NaN propagation
elseif (b.t=SNAN) or (b.t=QNAN) then

c--b

elseif {a.t=SNAN) or (a.t=QNAN) then
-3

giseif a.1=ZERO and b.1=ZERO then
c.t <+ ZERO

c.s -~ (a.s and b.s) or {round=F and (a.s or b.s))
/I NULL values are like zero, but do not combine with ZERO to alter sign
elseif a.1=ZEROQ or a.t=NULL then

C<D
elseif b.t=2EROQ or b.t=NULL then

C - a
elseif a.t=INFINITY and b.t=INFINITY then

if a.s # b.s then

¢ -+ DEFAULTSNAN // Invalid
else
C -3

endif
elseif a.t=INFINITY then

C -2
elseif b.t=INFINITY then

ceb
else
asserl FALSE // should have covered all the cases above
endif
enddef

def b -~ fneg(a) as
b.s - ~as
b.t «-a.t
b.e -3.e

b.f<af
enddef

def fsub(a,b) as fsubr(a,b,N) enddef

def fsubr(a,b,round) as faddr(a,fneg(b).round) enddet
def frsub{a,b) as frsubr{a,b,N) enddet

def frsubr(a,b,round) as faddr{fneg(a),b,round) enddef

FIG. 25D-4

U.S. Patent Jan. 5,2016 Sheet 129 of 509 US 9,229,713 B2

y 2570
def c - fcom(a,b) as
if (3.t-SNAN) or (a.t=QNAN} or (b.t=SNAN) or (b.t=QNAN) then
¢c< U
elseif a.t=INFINITY and b.t=INFINITY then
it a.s #b.s then
t-{as=0)?7G: L
else
c=-E
endif
elseif a.t=INFINITY then
cw (a.s=0)?G: L
elseif b.t=INFINITY then
c--(bs=0)?L
elseif a.t=NORM and b.t=NORM then
if a.s ¢ b.s then
¢w(as=0)?2G: L
else
ifa.e > b.e then
af - alt
bf -e- b_fuoa.e-b.e
else
al-- a.fllob-e-ae
bf b f
endif
it at = bf then
c<E
else
Cw((a.s=0)*(af>bf))?7G:L
~ endif
endif
elseif a.t=NORM then
c=(as=0)?G: L
elseif b.t=NORM then
c=(bs=0)?G: L
elseif a.t=2ERO and b.t=2EROQ then
c<E
else
assert FALSE // should have covered al the cases above
endif
enddef

FIG. 25D-5

U.S. Patent Jan. 5,2016 Sheet 130 of 509 US 9,229,713 B2

~—— 2570
def ¢ --fmul(a,b) as
if a.t=NORM and b.t=NORM then
cs-=astbs
c.l <-=NORM
ce-=-3ae+be
cft - 3af bt
I1 priority is given to b operand for NaN propagation
elseif (b.t=SNAN) or (b.t=QNAN) then
cs-=ashtbs
ct - bt
ce--be
cf - bf
elseif (a.t=SNAN) or (3.t=QNAN) then
cs-+—3as’?bs
ct <-at
ce-ae
c.f <-af
elseif a.t=ZERQ and b.t=INFINITY then
¢ -+ DEFAULTSNAN // nvalid
elseif a.t=INFINITY and b.t1=ZERO then
¢ <-DEFAULTSNAN // Invalid
elseif a.t=ZERQ or b.t=ZEROQ then
¢.S-eas?rhs
¢.t <+ ZERO
else
assert FALSE // should have covered al the cases above
endif
enddef

FIG. 25D-6

U.S. Patent Jan. 5,2016 Sheet 131 of 509 US 9,229,713 B2

2510
det ¢ fdivr(a,b) as
if a.t=NORM and b.1=NORM then
cS-= 3as?bs
¢c.t <--NORM
te-eae-Db.e +256
cf-w(af 0)/bf
/1 priority is given to b operand for NaN propagation
elseif (b.t=SNAN) or (b.t=QNAN) then
c5-+as’bhs
ct <+ bt
ce-+be
cf - bf
elseif (a.t=SNAN) or {a.t=QNAN) then
¢cS-=-3as?bs
c.t - at
c.e-ae
c.f = af
elseif a.t=ZERO and b.t=INFINITY then
¢ < DEFAULTSNAN // Invalid
elseif a.t=INFINITY and b.t=INFINITY then
¢ <—DEFAULTSNAN /f Invalid
elseif a.t=ZERO then
(S5e3s5*bs
¢.t-+ZERO
elseif a.t=INFINITY then
c.s--3ashtbs
c.t = INFINITY
else
assert FALSE // should have covered al the cases above
endif
enddef

def msb-e- findmsb{a) as
MAXF - 216 Largest possible f value after matrix muitiply
for |- 0 to MAXF .
if aMAXF_1__i = (0MAXF.1"II 1) then
msb e j
endif
endfor
enddef

FIG. 25D-7

U.S. Patent Jan. 5,2016 Sheet 132 of 509 US 9,229,713 B2

y 2570

Def ai-e- PackF(prec,a,round) as
case a.t of
NORM:
msb e~ findmsb(a.f)
m -+ msb-1-fbits(prec) //1sb for normal
rdn -~ -ebias(prec)-a.e-1-fbits(prec) // 1sb if a denormal
th ~~(m>rdn) ?2m:rdn
itrb < 0 then
aifr<- a.fmsp-1.0}]0"P
eadj -0
else
case round of
C:
§ - Omsb'fbl l (._as) b
F:
5 - QM]3 5)rb
N, NONE:
s = Omsb-bif <3 f41) afd?
X:
it a.fb.1..0# O then
raise FloatingPointArithmetic // Inexact
endif
s -0
z
s -0
endcase
v <= (0l1a.fmsp o) + (0] 5)
if vmsb=1 then
3ifr - Vmsb.1.rb
eadj-« 0
else
2ifr -~ Qfbils(prec)
eadj -1
endif
endif
aien < a.e + msb - 1 + eadj + ebias(prec)
if aien < 0 then
if round = NONE then
ai - a.5] | pebits(prec))| 4if
else

raise FloatingPointArithmetic //Underflow

FIG. 25D-8

U.S. Patent Jan. 5,2016 Sheet 133 of 509 US 9,229,713 B2

’/—-'2570

endif _
eiseif aien > tebits(prec) ypheq
if round = NONE then

lidefault: round-to-nearest overflow handling
ai --a.s|| 1ebits{prec) ¥ ofbits(prec)
else

raise FloatingPointArithmetic // Overilow
endif

else

3i - a.s || aien evits(prec)-1..0 || aifr
endif

SNAN:
if round # NONE then

raise FloatingP ointArithmetic /finvalid
endif

if -a.e < fbits(prec) then)

ai ~-a.s||1obits(prec){| 5§ 5 .1 o] 0'bits(prec)+a.e
else

Isb <~ 3.1.5,6-1-thits(prac)+1..0 #0

ai «-a.s||1ebits(prec)||a f.5 6.1...a.¢-1-mits(prec)+2 || 15D
endif

QNAN:

if -a.e < fbits(prec) then)
ai - a.s|| 1ebils(prec) I} a.fa.e-1.0| |0fb|ts(prec)¢a.o
else
1sb - a.f.3.6-1-thits(prec)+1.0 # 0
ai ~-3.g)| 19DHS(Prec) || 3 § 5 6.1, _a.6-1-mits(prec)s2{| 1sb

endif
ZERO:) '
ai-e- as|| pebils(prec) I o Pits(prec)
INFINITY:) _
ai - a.s|| 1evitsiprec) || giits(prec)
endcase
defdef

FIG. 25D-9

U.S. Patent Jan. 5,2016 Sheet 134 of 509 US 9,229,713 B2

Def ai - {sinkr(prec, a, round) as
case a.t of
NORM:
msb - findmsb(a.f)
th = -ae
iftb < 0 then
aifr e~ a.fmsp.,0]]0°
aims <~ msb - rb
else
case round of
C.C.D:
5 _.Omsb-rb“ (-ai.s)'b
F.F.D:
g 001D || (55 g)rb
N, NONE:
s 0™ [<aifp}) ai fF!
X
if ai.frb-1..0 # 0 then
raise FloatingPointArithmetic // Inexact
endif
s <0
Z,20:
s <0
endcase
v - (0}}a.fmsn.0) + (01]5)
if vimsp=1 then
aims e-msb +1-rb
else
aims -« msb - rb
endif
aifr <= vaimg..1b
endif
if aims > prec then
case round of
C.D, F.D, NONE, Z.D:
ai - a.s || (~as)prec-1
C,FNX2Z:

raise FloatingPointArithmetic // Overflow
endcase

FIG. 25D-10

U.S. Patent Jan. 5,2016 Sheet 135 of 509

elseif a.s = 0 then
ai - aifr
else
ai —e-aifr
endif
ZERO:
ai-e- (QPFeC
SNAN, QNAN:
case round of
C.D, F.D, NONE, Z.0:
ai—e- QPrEC
C.F.N, X, Z:
raise FloatingPoint Arithmetic // Invalid

endcase
INFINITY:
case round of
C.D,F.0, NONE, Z.D:
ai = a.s||{~as)Prec-!
C.F.N, X, Z
raise FloatingPointArithmetic // Invalid
endcase
endcase
enddef

defc Irecrest(a) as
bs<0
b.t <--NORM
be-0
b.f <1
¢ —=fest{fdiv(b,a))
enddet

def ¢ - frsqrest(a) as

b.s -0

b.t «-NORM

bew0

b.f -1

¢ -« fest{fsqr(fdiv(b,a)})
enddef

FIG. 25D-11

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 136 of 509 US 9,229,713 B2

def ¢ = fest(a) as
if (a.t=NORM) then
msb -+ findmsb(a.f)
a.ewae+msb-13
a.f - a.fmsb..msb-121} 1
else
C -3
endif
enddef

def - fsqr(a) as
if (a.t=NORM) and (a.s=0) then

c.s<+0

c.t<+NORM

if (a.eqg =1) then
c.e e(3.e-127)/2
c.f = sqr(a.f]|0'27)

else
ce-w(3e-128)/2
c.f < sqr{a.f110128)

endif
elseif {a.t=SNAN) or (a.t-QNAN) or a.t=ZERO or ({a.t=INFINITY) and
{a.s=0)) then
C=3
elseir {(a.t=NORM) or (a.t=INFINITY)) and (a.s=1) then
¢ -~ DEFAULTSNAN // invalid
else
assert FALSE /7 should have covered a1l the cases above
endif
enddef

FIG. 26D-12

U.S. Patent

US 9,229,713 B2

Jan. 5, 2016 Sheet 137 of 509

Operation codes

G.ADD.8 Group add bytes

G.ADD.16 Group add doublets

G.ADD.32 Group add quadiets

G.ADD.64 Group add octlets

G.ADD.128 Group add hexlet

G.ADD.L.3 Group add limit signed bytes

G.ADD.L.16 Group add limit signed doublets
G.ADD.L.32 Group add limit signed quadlets
G.ADD.L.64 Group add limit signed octlets
G.ADD.L.128 Group add limit signed hexlet

G.ADD.L. U3 Group add limit unsigned bytes
G.ADD.L.U.16 Group add limit unsigned doublets
G.ADD.L.U.32 Group add limit unsigned quadlets
G.ADD.L.U.64 Group add limit unsigned octlets
G.ADD.L.U.128 Group add limit unsigned hexlet
G.ADD.8.O Group add signed bytes check averflow
G.ADD.16.0 Group add signed doublets check overflow
G.ADD.32.0 Group add signed quadlets check overflow
G.ADD.64.O Group add signed octlets check overflow
G.ADD.128.0 Group add signed hexlet check overflow
G.ADD.U.8.0 Group add unsigned bytes check overflow
G.ADD.U.16.0 Group add unsigned doublets check overflow
G.ADD.U.32.0 Group add unsigned quadlets check overflow
G.ADD.U.64.0 Group add unsigned octlets check averflow
G.ADD.U.128.0 Group add unsigned hexlet check overflow

FiG. 26A

U.S. Patent Jan. 5,2016 Sheet 138 of 509 US 9,229,713 B2

Redundancies
G.ADD.size rd=rc,rc < G.SHL.lsize rd=rc,1
G.ADD.size.O rd=rc,rc < G.SHL.l.size.O rd=rc,1
G.ADD.U.size.O rd=rc,rc < G.SHL.IL.U.size.O rd=rc,1
Format

G.op.size rd=rc,rb

rd=gopsize(rc,rb)
31 24 23 18 17 12 11 6 5 0

| G.size | rd | rc | rb | op |
8 6 6 6 6

FIG. 26B

U.S. Patent Jan. 5,2016 Sheet 139 of 509 US 9,229,713 B2

Definition

def Group(op,size rd.rcrb)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
case op of
G.ADD:
for i « 0 to 128-size by size
aj+size-1.1 € Ci+size-1.i + bi+size-1.1
endfor
G.ADD.L:
for 1< 0to 128-size by size
t « (ci+size-1 [l Ci+size-1..1) + (bit+size-1 I bi+size-1..1)
ai+size-1.i < (tsize # tsize-1) ? (tsize I 1§138:1) tsize-1..0
endfor
G.ADD.LU:
for i &~ 0 to 128-size by size
t (01 || cisize-1.) + (01 || bj+size-1..i)
aj+size-1.1 < (tsize # 0) 7 (1512€) : tsize-1..0
endfor
G.ADD.Q:
for i « O to 128-size by size
t & (ci+size-1 [l Ci+size-1.i) + (i+size-1 || bi+size-1..i)
if tsize # tsize-1 then
raise FixedPomntArithmetic
endif
ai+size-1..1 < tsize-1..0
endfor
G.ADD.U.O:
for i 0 to 128-size by size
t « (01 || ci+size-1..i) + (01 || bi+size-1..1)
if tsize # O then
raise FixedPointArithmetic
endif
ait+size-1..i < tsize-1..0
endfor
endcase
RegWrite(rd, 128, a)
enddef

FIG. 26C

U.S. Patent Jan. 5,2016 Sheet 140 of 509 US 9,229,713 B2

Definition

def Group(op,size,rd,rc,rb}
¢ «+ RegRead(rc, 128)
b « RegRead(rb, 128)
case op of
G.ADD:
fori « 0 to 128-size by size
Zjssize-1.i ¢ Ci+size-1..i * Di+size-1..i
endfor
G.ADD.L:
for i «- 0 to 128-size by size
t « (Ci+size-1 || Citsize-1..i) ¥ (Dissize-1 ".bi-fsize»t.i)
Zissize-1.i «— (tsize # tsize-1) ? (tsize I| t§28]) : tsize-1..0
endfor
G.ADD.L.U:
for i « 0 to 128-size by size
te (01 | Ciesize-1.0) + (0" Il bissize-1..i)
Zivsize-1.i + (tsize # 0) 7 (152€) : t5ize-1.0
endfor
G.ADD.O:
for i « 0 to 128-size by size
t « (Cisize-1 Il Ci+size-1..i) * (Di+size-1 || bitsize-1..i)
if tsize # tsize-1 then
raise FixedPointArithmetic
endif
Zi+size-1..i ¢« lsize-1..0
endfor
G.ADD.U.O:
for i « 0 to 128-size by size
t« (0" |} Cissize-1..i) + (01 || bissize-1.i)
if tgize = O then
raise FixedPointArithmetic
endif
Zi+size-1..i ¢« lsize-1..0
endfor
endcase
RegWrite(rd, 128, z)
enddef

FIG. 26D

U.S. Patent Jan. 5,2016 Sheet 141 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 26E

U.S. Patent

Jan. 5, 2016 Sheet 142 of 509

Operation codes

US 9,229,713 B2

G.SET.AND.E.008

Group set and equal zero bytes

G.SET.AND.E.016

Group set and equal zero doublets

G.SET.AND.E.032

Group set and equal zero quadlets

G.SET.AND.E.064

Group set and equal zero octlets

G.SET.AND.E.128

Group set and equal zero hexlet

G.SET.AND.NE.008

Group set and not equal zero bytes

G.SET.AND.NE.Q16

Group set and not equal zero doublets

G.SET.AND.NE.032

Group set and not equal zero quadlets

G.SET.AND.NE.064

Group set and not equal zero octlets

G.SET.AND.NE.128

Group set and not equal zero hexlet

G.SET.E.008 Group set equal bytes

G.SET.E.016 Group set equal doublets

G.SET.E.032 Group set equal quadlets

G.SET.E.064 Group set equal octlets

G.SET.E.128 Group set equal hexlet

G.SET.GE.Q08 Group set greater equal signed bytes
G.SET.GE.O16 Group set greater equal signed doublets
G.SET.GE.032 Group set greater equal signed quadlets
G.SET.GE.064 Group set greater equal signed ocliets
G.SET.GE.128 Group set greater equal signed hexlet

G.SET.GE.U.008

Group set greater equal unsigned bytes

G.SET.GE.U.016

Group set greater equal unsigned doublets

G.SET.GE.U.032

Group set greater equal unsigned guadiets

G.SET.GE.U.064

Group set greater equal unsigned octlets

G.SET.GE.U.128

Group set greater equal unsigned hexlet

G.SET.L.008 Group set signed less bytes
G.SET.L.016 Group set signed less doublets
G.SET.L.032 Group set sighed less quadlets
G.SET.L.064 Group set signed less octlets
G.SET.L.128 Group set signed less hexlet
G.SET.L.U.008 Group set less unsigned bytes
G.SET.L.U.016 Group set less unsigned doublets
G.SET.L.U.032 Group set less unsigned quadlets
G.SET.L.U.064 Group set less unsigned octlets
G.SET.L.U.128 Group set less unsigned hexlet
G.SET.NE.OO8 Group set not equal bytes
G.SET.NE.O16 Group set not equal doublets

FIG. 27A-1

U.S. Patent

Jan. 5§, 2016

Sheet 143 of 509

G.SET.NE.0Q32 Group set not equal quadlets

G.SET.NE.O64 Group set not equal octlets

G.SET.NE.128 Group set not equal hexlet

G.SUB.008 Group subtract bytes

G.SUB.008.0 Group subtract signed bytes check overflow
G.SUB.016 Group subtract doublets

G.SuUB.016.0 Group subtract signed doublets check overflow
G.SUB.032 Group subtract quadlets

G.SUB.032.0 Group subtract signed quadlets check overflow
G.SUB.064 Group subtract octlets

G.SUB.064.0 Group subtract signed octlets check overflow
G.SUB.128 Group subtract hexlet

G.SUB.128.0 Group subtract signed hexlet check overflow
G.SUB.L.008 Group subtract limit signed bytes

G.SUB.L.O16 Group subtract limit signed doublets
G.SUB.L.032 Group subtract limit signed quadlets
G.SUB.L.064 Group subtract limit signed octlets
G.SuB.L.128 Group subtract limit signed hexlet
G.SUB.L.U.008 Group subtract limit unsigned bytes
G.SUB.L.U.016 Group subtract limit unsigned doublets
G.SUB.L.U.032 Group subtract limit unsigned quadlets
G.SUB.L.U.064 Group subtract limit unsigned octlets
G.SUB.L.U.128 Group subtract limit unsigned hexlet
G.SUB.U.008.0 Group subtract unsigned bytes check overflow
G.SUB.U.016.0 Group subtract unsigned doublets check overflow
G.SUB.U.032.0 Group subtract unsigned quadiets check overflow
G.SUB.U.064.0 Group subtract unsigned octlets check overflow
G.SUB.U.128.0 Group subtract unsigned hexlet check overflow

FIG. 27A-2

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 144 of 509 US 9,229,713 B2

Equivalencies
G.NEG.016 Group negate doublet
G.NEG.016.0 Group negate signed doublet check overflow
G.NEG.032 Group negate quadlet
G.NEG.032.0 Group negate signed quadlet check overflow
G.NEG.064 Group negate ocilet
G.NEG.064.0 Group negate signed octlet check overflow
G.NEG.128 Group negate hexlet
G.NEG.128.0 Group negate signed hexlet check overflow
G.SET.LE.I.O16 Group set less equal immediate signed doublets
G.SET.LE.I1.032 Group set less equal immediate signed guadlets
G.SET.LE.1.064 Group set less equal immediate signed octlets
G.SET.LE.I.128 Group set less equal immediate signed hexlet
G.SET.LE.1.U.016 Group set less equal immediate unsigned doublets

G.SET.LE.1.U.032

Group set less equal immediate unsigned quadlets

G.SET.LE.L U.064

Group set less equal immediate unsigned octlets

G.SET.LE.1LU.128

Group set less equal immediate unsigned hexlet

G.SET.G.1.016 Group set immediate sighed greater doublets
G.SET.G.).032 Group set immediate signed greater quadlets
G.SET.G.1.064 Group set immediate signed greater octlets
G.SET.G.L.128 Group set immediate signed greater hexlet
G.SET.G.LU.016 Group set greater immediate unsigned doublets
G.SET.G.L.U.032 Group set greater immediate unsigned quadlets

G.SET.G.1.U.064

Group set greater immediate unsigned octlets

G.SET.G.1.U.128

Group set greater immediate unsigned hexlet

G.NEG.size rd=rc

G.SUB.l.size rd=0,rc

G.NEG.size.O rd=rc

G.SUB.L.size.O rd=0,rc

G.SET.G.l.size rd=imm,rc

G.SET.GE.lLsize rd=imm-1,rc

G.SET.G.1.U.size rd=imm,rc .

G.SET.GE.l.U.size rd=imm-1,rc

G.SET.LE.l.size rd=imm,rc

G.SET.L .l size rd=imm-1,rc

G.SET.LE.l.U.size rd=imm,rc

IHHHHN

G.SET.L.I.U.size rd=imm-1,rc

FIG. 27A-3

U.S. Patent Jan. 5, 2016 Sheet 145 of 509 US 9,229,713 B2
Redundancies
G.SET.AND.E.l.size rd=0,rc < G.SET.sizerd
G.SET.AND.NE.l.size rd=0,rc & G.ZEROrd
G.SET.AND.E.l.size rd=-1,rc, < G.SET.E.Zsize rd=rc
G.SET.AND.NE l.size rd=-1,rc < G.SET.NE.Z.size rd=rc
G.SET.E.l.size rd=0,rc < G.SET.E.Zsize rd=rc
G.SET.L.l.size rd=-1,rc < G.SET.GE.Z.size rd=rc
'G.SET.GE.l.size rd=-1r¢c o G.SET.L.Zsize rd=rc
G.SET.NE.l.size rd=0,rc < G.SET.NE.Z.size rd=rc
G.SET.GE.l.U.size rd=0,rc < G.SET.E.Z.size rd=rc
G.SET.L.L.U.size rd=0,rc & G.SET.NE.Z.size rd=rc
Selection
class operation | cond | form | operand size check
arithmetic |SUB | 16 32 64 128
NONEU 16 3264 128 |O
boolean SET.AN |E [16 32 64 128
D NE
SET
SET L GE {1 NONEU 16 32 64 128
G LE
Format
G.op.size rd=rb,rc
rd=gopsize(rb,rc)
31 24 23 18 17 12 11 65 0
| G.size | rd] rc | rb | op |
8 6 6 6 6

FIG. 27B

U.S. Patent Jan. 5,2016 Sheet 146 of 509

Definition
def GroupReversed(op,size,rd,1c.rb)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
case op of
G.SUB:
for i < 0 to 128-sizc by size
di+size-1..j € bi+size-1..i - Ci+size-1..i
endfor
G.SUB.L:
fori « 010 128-size by size

t & (bi+size-1 || bi+size-1..4) - (Ci+size-1 ll Ci+size-1..i)

aj+size-1..i © (tsize * tsize-1) ? (tsize [t83621) : tsize-1..0
endfor
G.SUB.LU:

for 1 « 0 to 128-size by size
t« (O I bisize-1.i) - (O f| cinsize-1..3)
Ajtsize-1..1 ¢ (tsize # 0) 7 092 t5ize-1 0
endfor
G.SUB.O:
for i « O to 128-siz¢ by sizc
t & (bi+size-1 | bi+size-1..) - (Citsize-1 | Citsize-1..0)
if (1size * tsize-1) then
raise FixedPointAnthmetic
endif
ai+size-l..i < lsize-1..0
endfor
G.SUB.U.O:
for i « 0 to 128-size by size
4= (01 | biwsize-1..i) - (0 Il Cisize-1..0)
if (tgize # 0) then
raise FixedPointAnthmetic
endif
aj+gize-1..i € tsize-1..0
endfor
G.SETE:
for i « 0 to 128-size by size
aj+size-1..i ¢ Oitsize-1.i = Citsize-1..)5%°
endfor
G.SET.NE:
for i « 0 to 128-size by size
aj+size-1..i & Oitsize-1..i # Cit+size-1..i))%%
endfor
G.SET.AND.E:
for i « 010 128-size by size

aj+size-1..i & ((bi+size-1.i and Citsize-1_j) = 0)512¢

endfor
FIG. 27C-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 147 of 509 US 9,229,713 B2

G.SET.AND.NE:
for i < 0 to 128-size by size)
aj+size-1..i ¢ ((bi+size-1..i and cisize-1. i) = 0)51%°
endfor
G.SET.L:

fori & 010 128-size by size
aj+size-1..i € ((rc=rb) ? (bi+size-1.i < 0) : (bitsize-1.j < Ci+size-1. DSZ
endfor
G.SET.GE:

for i «~ 0 to 128-size by size)
ajtsize-1..i €« ((rc = rb) 7 (bitsize-1..i 2 0) : (bi+size-1. i 2 Citsize-1, D)2

endfor
G.SET.L.U

for i « O to 128-size by size
Aitsize-1..i « ((rc =1b) ? (bi+size-1.i > 0)
(0| bi+size-1..i) < (O | ci+size-1..1)))52¢
endfor
G.SET.GE.U:

for i <~ 0to 128-size by size
2i+size-1..i ¢ ((1c = 1b) ? (bi+size-1..iS 0):
(O} bitsize-1.3) 2 (O [l ci+size-1..))51%°

endfor
endcase
RegWrite(rd, 128, a)
enddef

FIG. 27C-2

U.S. Patent Jan. 5,2016 Sheet 148 of 509

Definition

def GrouplmmediateReversed(op,size,ra,imm) as
¢ « RegRead(rc, 128)
S « immg
case size of
16:
i16 « s || imm
b« i16]]i16]]i16 |16 || i16 ||i16]| i16 || i16
32;
b « s22 || imm || s22 || imm || s22 | imm |} 522 |} imm
64:
b « s°4 || imm {] s%4 |} imm
128:
b« s"8 |jimm
endcase
for i « 0 to 128-size by size
case op of
G.SuUB.I:
Zi+size-1..i ¢ Di+size-1..i - Ci+size-1..i
G.SUB.L.O:
t « (bi+size-1 || Di+size-1..i) - (Ci+size-1 || Ci+size-1..i)
if (tsize # tsize-1 then
raise FixedPointArithmetic
endif
Zissize-1..i ¢ tsize-1..0
G.SUB.ILU.O:
t & (01 1] bissize-1.1) - (01 Il Civsize-1..0)
if (tsize # O then
raise FixedPointArithmetic
endif
Zj+size-1..i < lsize-1..0
G.SET.E.I:
Zitsize-1..i < (Di+size-1..i = Ci+size-1.
G.SET.NE.I:
Zirsize-1.j < (Dj+size-1..i # Citsize-1.
G.SET.AND.E.I:
Zitsize-1..i < ((Di+size-1.i and Cissize-1..) = 0)%12¢
G.SET.AND.NE.I: }
Zitsize-1..i — ((Di+size-1.i and Ci+size-1..j) = 0)512€
G.SET.L.I:
Zirsize-1..i & (Dissize-1..i < Cissize-1.i)52®
G.SET.GE.I:

.i)SIZG

'i)SIZG

FIG. 27D-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 149 of 509 US 9,229,713 B2

Zissize-1..i © (Ditsize-1..i = Cisize-1..)5128
G.SET.L.I.U:
Zi+size-1..i <= ((O || bi+size-1..i) < (0)] Ci+size-1..i))5'%®
G.SET.GE.LU:
Zissize-1..i « ({0] birsize-1..i) = (0 || Cissize-1..i))5128
endcase
endfor
RegWrite(rd, 128, z)
enddef

FIG. 27D-2

U.S. Patent Jan. 5,2016 Sheet 150 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 27E

U.S. Patent Jan. 5,2016 Sheet 151 of 509 US 9,229,713 B2

Operation codes
E.CON.3 Ensemble convolve signed bytes
E.CON.16 Ensemble convolve signed doublets
E.CON.32 Ensemble convolve signed quadlets
E.CON.64 Ensemble convolve signed octlets
E.CON.C.8 Ensemble convolve complex bytes
E.CON.C.16 Ensemble convolve complex doublets
E.CON.C.32 Ensemble convolve complex quadlets
E.CON.M.8 Ensemble convolve mixed-signed bytes
E.CON.M.16 Ensemble convolve mixed-signed doublets
E.CON.M.32 Ensemble convolve mixed-signed quadlets
E.CON.M.64 Ensemble convolve mixed-signed octlets
E.CONU3 Ensemble convolve unsigned bytes
E.CON.U.16 . Ensemble convolve unsigned doublets
E.CON.U .32 Ensemble convolve unsigned quadlets
E.CON.U.64 Ensemble convolve unsigned octlets
E.DIV.64 Ensemble divide signed actlets
E.DIV.U.64 Ensemble divide unsigned octlets
E.MUL.8 Ensemble multiply signed bytes
E.MUL.16 Ensemble multiply signed doublets
E.MUL.32 Ensemble multiply signed quadlets
E.MUL .64 Ensemble multiply signed octlets
E.MUL.SUM.8 Ensemble multiply sum signed bytes
E.MUL.SUM.16 Ensemble multiply sum signed doublets
E.MUL.SUM.32 Ensemble multiply sum signed quadlets
E.MUL.SUM.64 Ensemble multiply sum signed octlets
E.MUL.C.8 Ensemble complex multiply bytes
E.MUL.C.16 Ensemble complex multiply doublets
E.MUL.C.32 Ensemble complex multiply quadlets
EMULM.8 Ensemble multiply mixed-signed bytes
E.MUL.M.16 Ensemble multiply mixed-signed doublets
E.MUL.M.32 Ensemble multiply mixed-signed quadlets
E.MUL.M.64 Ensemble multiply mixed-signed octlets
E.MUL.P.8 Ensemble multiply polynomial bytes
E.MULP.16 Ensemble multiply polynomial doublets
E.MIUL.P.32 Ensemble multiply polynomial quadlets
E.MUL.P.64 Ensemble multiply polynomial octlets
EMUL.SUM.C 3 Ensemble multiply sum complex bytes
EMUL.SUM.C.16 Ensemble multiply sum complex doublets
E.MUL.SUM.C.32 Ensembie multiply sum complex quadiets
E.MUL.SUM.M 8 Ensemble multiply sum mixed-signed bytes
E.MUL.SUM.M.16 Ensemble multiply sum mixed-signed doublets
E.MUL.SUM.M.32 Ensemble multiply sum mixed-signed quadlets
E.MUL.SUM:M.64 Ensemble multiply sum mixed-signed octlets

FiG. 28A-1

U.S. Patent Jan. 5,2016 Sheet 152 of 509 US 9,229,713 B2

E.MUL.SUM.U.8 Ensemble multiply sum unsigned bytes
E.MUL.SUM.U.16 Ensemble multiply sum unsigned doublets
E.MUL.SUM.U.32 Ensemble multiply sum unsigned quadlets
E.MUL.SUM.U.64 Ensemble multiply sum unsigned octlets
E.MUL.U.8 Ensemble multiply unsigned bytes
E.MUL.U.16 Ensemble multiply unsigned doublets
E.MUL.U.32 Ensemble muitiply unsigned quadiets
E.MUL.U.64 Ensemble multiply unsigned octlets

FIG. 28A-2

U.S. Patent Jan. 5,2016 Sheet 153 of 509 US 9,229,713 B2
Selection
class op type size
multiply E.MUL NONE M U 816 32 64
P
: C 816 32
multiply sum EMUL.SUM |none M U 8 16 32 64
C 816 32
convolve E.CON NONE M U 816 32 64
C 8 16 32
divide E.DIV none U 64
Format
E.op.size rd=rc,rb
rd=eopsize(rc,rb)
31 24 23 18 17 12 11 65 0
| E.size | rd | rc | rb | op |
8 6 6 6 6

FIG. 28B

U.S. Patent Jan. 5,2016 Sheet 154 of 509 US 9,229,713 B2

Definition

def mul(size,h,vs,v,i,ws,w.j) as

mul ¢ ((vs&vsize-1+N512 || vsize 1+4i. i) * (WS&Wsize-14)P7S1ZE | wsize-1 4] j)
enddef

def ¢ « PolyMultiply(size,a,b) as
plO] «- O27size
fork « 0tosize-l
plk+1] - pK] ~ 2k ? (056K b [oK) ; 92"size
endfor
¢ « p]size]
enddef

def Ensemble{op,size,rd,rc,rb)
¢ « RegRead(rc, 128) -
b < RegRead(rb, 128)
case op of
E.MUL:, EMUL.C:, EMUL.SUM, EMUL.SUM.C, E.CON, E.CON_C, E.DIV:
csebse |
E.MUL M:, EMUL SUM.M, E.CONM:
s« 0
bs « |
EMUL.U;, EMUL SUM.U, ECON.U, EDIV.U, EMUL.P:
cse— bse« 0
endcase
case op of
EMUL, EMUL.U, EMUL.M:
for i « 0 10 64-size by size
d2¥(i+size)-1..2* « mml(size 2*size,cs,¢,i,bs,b,1)
endfor
E.MUL.P:
for i « 0 to 64-size by size
d2*(itsize)-1..2*i « PolyMultiply(size csize-1+i..i,bsize-1+i..0)
‘endfor
EMUL.C:
for i « 0 to 64-size by size
if (i and size) = 0 then
p < mul(size,2*size, 1,c,i,1,b,i) - mul(size,2*sizc, 1 ,c,i+size, 1,b,i+size)
else
p « mul(size,2*size, 1,c,i,1,b,i+size) + mul(size,2*size, 1,¢,i,1,b,i+size)
endif
d2%(it+size)-1.2% < P
endfor
EMUL.SUM, EMUL.SUM .U, EMUL.SUMM:
pl0] « 0128
fori « 0 to 128-size by size
pli+size] « p[i} + mul(sizc,128,¢s.¢.i,bs b,1)
endfor

FIG. 28C-1

U.S. Patent Jan. 5,2016 Sheet 155 of 509 US 9,229,713 B2

a <« p[128])
E.MUL.SUMC:
pl0] « 064
pisize] « 064
for 1 « 0 to 128-size by size
if (i and size) = 0 then
pli+2°*size] « pli] + mul(size,64,1 ¢ i, 1,b,i)
- mul(size,64,1 c,i+size, 1 b,i+size)
else
pli+2*size] « pfi] + mul(size,64,1,c,i,1,b,i+size)
+ mul(size, 64,1 ¢ i+size,1,b,t)
endif
endfor
a « p[128+size] || p{128]

E.CON, E.CON.U, ECON.M:
plO] « 0128
for j ¢« 0 to 64-size by size
for i « O to 64-size by size
pli+size]2s (i+size)-1..2%i «= pl)2*(i+size)-1..2% +
mul(size,2*size,cs,c,i+64-),bs,b,j)
endfor
endfor
a « p[64]
E.CON.C:
pl0] - 0128
for j « 0 to 64-size by size
for i « Oto 64-size by size
if ((~i) and j and size) = 0 then
pU+size]2%(i+size)-1..2% « pll2%(i+size)-1..2% +
mul(size,2*size, 1,¢,i+64-5,1,b,j)
else
plitsize]2%(i+size)-1..2% « PUJ2*(i+size)-1..2% -
mul(size,2*size, },c,i+64-j+2%size, 1,b,j)
endif
endfor
endfor
a « p{64]

if (b =0) or ((c=(1]j063)) and (b = 154)) then
a « undefined

FIG. 28C-2

U.S. Patent Jan. 5,2016 Sheet 156 of 509 US 9,229,713 B2

else
qec/b
r<c-q*
a <« 163.001963..0
endif
E.DIV.U;
if b= 0 then
a « undefined
else
qe (0flc)/(0}ib)
rec-(09*Olib)
a<r163.00963.0
endif
endcase
RegWrite(rd, 128, a)
enddef

FIG. 28C-3

U.S. Patent Jan. 5,2016 Sheet 157 of 509 US 9,229,713 B2

83 rC(64) 0

63

rb(64)

127 rd(128) 0

Ensemble muitiply doublets

FIG. 28D

U.S. Patent Jan. 5,2016 Sheet 158 of 509 US 9,229,713 B2

63

rb(64)

rd(128) 0

Ensemble multiply complex doublets

FIG. 28E

U.S. Patent Jan. 5,2016 Sheet 159 of 509 US 9,229,713 B2

127 .rc(128) 0
127
(o] O (o] (o] (o) (o] o]
(o] [0} (o] (o) o]
(o] (o] (o] (o] Q
(o] [o] O O (o}
rb(128)
(o] (o] (e} (o] (o] [0} (o]

128 rd(128) 0

Ensemble multiply sum doublets

FIG. 28F

U.S. Patent Jan. 5,2016 Sheet 160 of 509 US 9,229,713 B2

rd(128)

127

(o] o]

128 rd(128) 0

Ensemble multiply sum complex doublets

FIG. 28G

U.S. Patent Jan. 5,2016 Sheet 161 of 509 US 9,229,713 B2

rb(64)

= 2
o~ Q
— o)
5 ° 3
— (o]
o
)
2
S
g -
S xR
2 .
o]
e O
Q TR
=t
L
N~
N Py
-~ 0
~N
=
o]
-

127

US 9,229,713 B2

Sheet 162 of 509

Jan. 5, 2016

U.S. Patent

(F9)au

€9

182 "OId

S]3|qNOp SAJOAUOD 2|qWIasuUg

XA

U.S. Patent Jan. 5,2016 Sheet 163 of 509 US 9,229,713 B2

Definition

def mul(size,h,vs,v,iws,w,j) as

mul « ((vS&vsize-1+)7"528 || vize-1+i..i) * (WSBWsize-1 +J.)h-size Il Wsize-1+4..j)
enddef

def ¢ « PolyMultiply(size,a,b) as
p[0] « 02'size
fork « 0 to size-1
Plk+11 = plk] * (ak ? (05122 |} b || Ok) : 0%'size)
endfar
¢ « p[size]
enddef

def Ensemble(op,size,rd,re,rb)
¢ < RegRead(rc, 128)
b « RegRead(rb, 128)
case op of
E.MUL:, EMUL.C:, EMUL.SUM, E. MUL.SUM.C, E.CON, E.CON.C, E.DIV:
cse« bse 1
E.MUL.M:, EMUL.SUM.M, E.CON.M:
cs« 0
bs « 1
E.MUL.U;, EMUL.SUM.U, E.CON.U, E.DIV.U, EMUL.P:
cs<«—bs« 0
endcase
case op of
E.MUL, E.MUL.U, EMUL.M:
for i « O to 64-size by size
Z2*(i+size)-1..2% « mul(size,2*size,cs,c,i,bs,b,i)
endfor
E.MUL.P:
fori « O to 64-size by size
Z2%(j+size)-1..27 « PolyMultiply(size Csize-1+i..i.Dsize-1+i..i)
endfor
E.MUL.C:
for i « 0 to 64-size by size
if (i and size) = 0 then
p « mul(size,2*size,1,c,i,1,b,i) - mul(size,2*size,1,c,i+size,1,b,i+size)
else
p « mul(size,2"size,1,c,i,1,b,i-size) + mul(size,2*size,1,c,i-size,1,b,i)
endif
Z2*(i+size)-1..21 < P
endfor
E.MUL.SUM, E.MUL.SUM.U, EXMUL.SUM.M:

FIG. 28J-1

U.S. Patent Jan. 5,2016 Sheet 164 of 509 US 9,229,713 B2

pl0] « pt28
for i « 0 to 128-size by size

pli+size] « pfi] + mul(size, 128,cs,c,i,bs,b,i}
endfor
Z <+ p[128]

E.MUL.SUM.C;

p[0] « 064
plsize] « 064
for i < 0 to 128-size by size

if (i and size) = 0 then

pli+2*size] « pfi] + mul(size,64,1,c,i,1,b,i)
- mul(size,64,1,c,i+size,1,b,i+size)

else
pli+2*size} « pli} + mul(size,64,1,¢i,1,b,i-size)
+ mul(size,64,1,c,i-size,1,b,i)
endif
endfor

z « p[128+size] || p[128]
E.CON, E.CON.U, E.CON.M:
plO] « 0128
for j « 0 to 64-size by size
for i «<— O to 64-size by size
pli+sizelo:(i+size)-1..2% « Plil2*(i+size)-1..2+i +
mul(size,2"size,cs,c,i+64-,bs b,j)
endfor
endfor
Z « p[64]
E.CON.C:
p[0] « o128
for j « O to 64-size by size
fori « 0 to 64-size by size
if {(~i) and j and size) = 0 then
pli+size]2*(i+size)-1..2*i « Plil2*(i+size)-1..2*i
muli(size,2*size,1,¢,i+64-j,1,b,j)

else
pli+size]2(i+size)-1..2*i « Plil2*(i+size)-1..2% -
mul(size,2*size,1,c,i+64-j+2*size,1,b,j)
endif
endfor
endfor
z « p[64]
E.DIV:

if (b =0) or { (c = (1]|1083)) and (b = 184}) then
Z « undefined
else
q«c/b
rc-qb
z+ 3.0l 963.0
endif

FIG. 28J-2

U.S. Patent Jan. 5,2016 Sheet 165 of 509 US 9,229,713 B2

E.DIV.U:
if b =0 then
Z « undefined
else
g« (Olic)/(0fib)
rc-{0]fq)(0fib)
z+ 153,011 963.0
endif
endcase
RegWrite(rd, 128, z)
enddef

FIG. 28J-3

U.S. Patent Jan. 5,2016 Sheet 166 of 509 US 9,229,713 B2

Exceptions

none

FIG. 28K

U.S. Patent Jan. 5,2016 Sheet 167 of 509 US 9,229,713 B2

Fioatiag-point faseBon Delinitions

def ob o obisfpree) as
case peaf of

16

b % §
)

2% %~ §
&4,

ey o 1
138

b % 15

ndnass

enddef

def eb +~ elnasipre) as

oh e 0§ (oHts{preni-d
eadded
def fb o fhts{pres) s

B pree~ b~ h
saddnf

def o e Flgotp, i) o
&3 & dlpreced
3 4 Apswe-d. fhits{proed
38« S finspreci 1.8
§F e YeBUB{BEAEY ien
i al~ § thes
a4 e INFIREYY
sheeil afy flata{proci-l then
2.1 e SNaN
3.8 &~ -foltsipree)
afe 1l altisipray2 6
pise
a8 e {PMai
2.8 e <Shits{precy
a.f & af

g
&
£
s

FIG. 29

U.S. Patent

Jan. 5, 2016 Sheet 168 of 509

abserf pe = f than
W af = then
2% 4~ CERG

wlse
2% e HORM
s e Lebias{preck-foasipres)
af e Tfal
erghf
glse
.1 o RORM
24 e ae-shias{proc-foiipees}
afe b fiaf
sondid
crdded

def 3 v DEFAULTONAN as
3.8 ¥
3.8 e IANAN
ER-R
#.§ ¢ §
enddef

duf 2 e DEFALLTINAD »s
a8
3.4 4~ BMAN
a8 fe o
afd-
euddef

def fhddia b} as faddefa b Ny enddef

ded ¢ o faddrdabroundy 5z
i e NORM zod e RDRM thea

desre 3.b with exporent aligeed sad fraction sdjusied

s > b then

[

ey e-by

RN X

S A

ef 4 BF) EEDE
siweifae < e then

dieal

B8 ¢ 1
desbe

4.4 4~ 388 ghsae
[S

X

iG.

EA)
Kewl

- {cont)

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 169 of 509 US 9,229,713 B2

softf
ol e gt
2.8 4wl
Ty = ooy then
gs e ds
e dfred
chimfd f > efthea
S5 ds
e dfwef
elseif d.f < e fdnm
.5 e 88
Gfe e f- g
eisg
S8 e oEF
e8¢ ZERQ
cadif
priovicy I8 grven © bopernd for NaN gropagation
ebseif {b.r=SHANY or (5 =GN AN} thea

T B
slseif {a S MANY or fa QW AN} then
RO

slyei€ 2 p=SBERO and 80 ERD then

b e ZERG

.5 e {o.s and busd or {round=F ang {3.5 or bl
H MULL valoes gy fike vorg, Dut do not combine withy ZERO 1o aliey sign
ehzeif & o ERE or a3 MULL thes

b
sl by BERG or bR then
$ A

eixeif a e FRFINTTY and BoosIMEINTY then
Has bhsthes
¢ e DEFAULTENAN & Lyvalid

aise
B4
grpdil
clseid a p=INFINITY then
e R
el & IMEFINITY tes
¢ B
else

assent FALSE ¥ should have coverend af the casty sbove
andef
enddaf

def & fneglal as
DE ¥
B e~ ag
b5 e B.E
pf e af
enddel

FIG, 28 (cont)

U.S. Patent Jan. 5,2016 Sheet 170 of 509 US 9,229,713 B2

def fabeia b round) as faddrle fueg{h) round} endded
Jof fraubiab} as Hrsubela b, Ny onddef
def froubei{a b ronnd) as dde{foegial b, ound} enddef

def ¢ e foumis by as
i {2.0=GMNANY or {a = QRANY o =3 NARD or (b ONANS then

< %~ 4
claif 2 oo INPINITY and bosINFINITY then

3w by then
e sl TG L

slse
¢ B
cadif
bl s e IRFINTTY ten
¢ {a s VG L
ehanif B.-DIFTNITY then
g {he=(TN L
elsedf 2, =NORM and §.oaNGEM thea
Hesnisthen
¢ e~ {as= T & L
vlop
Hae>hetden
af e mf
bf e b £ QR OB
slse
3 g a P ubene
e hf
enlif
i o = b then
e B
pise
g e f >R IG L
engdif
encif
eissife e NORM then
go-fassPp Y L
ehreil b eaNCER M then
€ by 2 Gr L
glseif 3. 02 ZBRO and b= BRG then

¢4 B
el
asseet FALSE ¥ should have coverad a1 the sases above
endif
enddey

FIG. 29 cort)

U.S. Patent

Jan. 5, 2016 Sheet 171 of 509

def o o Hanlla. Y ax
2 4=NORM and baeNORM then
Rk R X
o o HORM
o e gt he
eie-af*hf _
I priceiy Is given i b opevand for N progegation
ehyif (R -EMAN) w (B sQNANY then
SH v us by
DR S R
o8 - Dp
0.8 e b,
cizedf (3 1= SHANY or (R = QNAN) then
DR am®hs
DRI R
R
S 4w af
elceif 2 e BRIY and hooINFINITY then
¢ - DEFAULTSNAN # favalid
shsef . p=INFENITY and 22 ERU than
¢ % REFAULTINAN # lnvalig
piseif ar= X ERD o e ERO then
28 ¢~ a5 hs
e~ SRR

gine
assers PALSE H should bave sovesd af the cases above
exvhif
enddsded

def ¢ o fdivefa bl as
F 2 e NGRM and b £NORM ten
cse-asby
€1 o~ NORM
VR O LR X PN T
cf eIt shy
¥ priovivy fs given 1o b operand for KalN propagstisn
ehseif {h.r=ENAN) ar (BhosQMANS tun
s eas™hy
(R
LR X
gl e b
einaif {2 0=SNANY or (. =UNAN) than
23 ¢-a3" by
0.4 el
L8 $ 28
I %

FIG. 28 (cont)

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 172 of 509 US 9,229,713 B2

ebseif 2 =2 ERO and bi=ZER{ then
& oo DEFAULTINAN # lnvaba
elretf @ =INFINITY and b i=INFINITY then
¢ e DEFAULTINAN & nvalid
elasif 2 =2 ERG then
Lie~as”bha
sl e ZERO
sloeif 3. w=IMFIPHTY than
w5 e a8 has

ot < INFIMNITY

aaserr FALSE /7 shoudd have vovered al the cases above
envdif

def sty o fincdaubial ax
MAXF e 218 7 Laegest possible € valne after matrix soliiply
for § e (1o MAXF
EaMAXF-1, = (OMAXE1) then
msh ¢
eodif
gradfor
enddef

dof at ¢ PackF{prec,a round} as
cage atof
NORM:
pisls 4 fndeada. £}
- msh-$-ftsdpren) ¥ Isb for normal
sy &~ ~shiag{precha.e-1-fhits{presy # fsb if a denonmal
rh oo (e rednd 7o rdn

o

Ff@ 2 ‘ {cont)

U.S. Patent Jan. 5,2016 Sheet 173 of 509

F 30 < 8 shes
STPEPY SENIIES Tt
padf - &

case sound of
s
§ g GrEEDVTR R
L
¢ o DOEBEE 15 ot
N, NONE:
§ e QUEBTY g g v g el
X:
Hafhe) g« 0 thes

sise FlostingPolntAdihmetic # laexact

R
oS
RN
gudcase
¥ o {3 fnehy. 03+ {0}
i vipsh = § thes
3 e vmabel rb
sadi < ¥
clse
aify ¢ ofbitaipreey
el 4~ 1
suddd
amdif
aitn v oag mshoe e eadi + ebinsfpree)
if st X 6 then
3 ponred = NOINE then
s 4o n.g f OSbISIpRECh § ey

S
raise PloatingFomdrithmetic MUnderfiow
endif

elveif wion 2 PDINPELT gy
if vound = NONE then

#defaalty ronndto-nenresy sverfiow handiing

ai e as i pobia{precd y gftits{pec

elsn
raisg FlostingPointAnithmetic #Mlindecfiow
encf
slse
2t & 2.8 § alenebissforoh1 0§ aify
endif

FIG. 28 (cont)

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 174 of 509 US 9,229,713 B2

SNANM:
if round » NOME thes
s FloatingFomtArithmetic Vsl
st
i i € fiislpran) e
af e asf rEblERCl g g o sy oibispreckas
glse
¥ e a g o e tbitsipranit.0 # 0
ai e ff ROUINPIOOHR 4 £ gt oo Shits{procysd 150
anchif
OMAN:
i a0« fntsépres) thes
2 e B3 ﬁ iﬁbii&{{?iﬁ‘\‘.} h 3’:*3% 5.6 ;; {i&kggpfm}éaa
she
isb e afg e fbistpreyt . £ 2 8
ab e n s BRI R a £y wg g e Tfbisiprecyy § b
weudif
FERD:
i e 4.3 § Qebitsiprec) afbits{prec}
FTRETY
Qi e 2§ tobuEpIoCY ¢ adbivslprec)
endease
stefddef

sdef af s foinke{prds, 3, round} as
case 3.4 0f
NORM:
msd - fndnnbia.
£ €~ -B.€
Wrhb g Uihen
ifF 4 2 fopahy, p R0
Bimg e mish ~ vl
gizg
case roond of
LRV £
W T
F Fix
¢ o Obesd g o b
H, NONE:
§ o QMBS g £, i 2R
X:
i ud feped 0w Qthen
mise FlostingPoiniArithoesic & nemaot
adié

-G

19

5 %
L Z

w 3w

¢ 3}

FIG, 28 (cont)

U.S. Patent Jan. 5,2016 Sheet 175 of 509 US 9,229,713 B2

srdonse
¥ - (Slls finahy 0F + 00}
H vonah = § then

FHRs - b+ gk
afxg

Bhng o sk o 1
exshf

silr e vaims

C.0, FD, NONE, 21
a ey f (asypreed

C PR X5
ratse FloatingFantAntanstic # Overfiow
ensdnase
elfserd s o= { dhen
Bt €~ iy
whne
aF 4~ vaify
spdif
TERG
o g GPRE
SNAN, QNAN:
s vonad of
D, F O, NONE, 2D
¥ 4ne QRFEC

S

N
CE NN, &
raise FloatingFointArithmetis § Javalid
LRATRTL

INFINITY:
cage round of
C0 FD, NONE 2.0
a3 o 5.5 f {ragpfiieed
LN X 2
ravsy FlosthgPoimdsithnene ¥ valid
endonse
eglonng
enddef
dof ¢ o frocrenial) ag
[
bt e MORM
b.g ¢ §
bt
< A fosflivib o)
prddef

FIG. 28 (cont)

U.S. Patent

Jan. 5, 2016 Sheet 176 of 509

daf n e Pragrest{al as

by e &

bt e NOBRM

b e &

Bt

¢ e Festfoqriidivib el
sewddef

dof ¢ e~ festiales
i {a NN R thon
sty o findvshia
2.6 e me - onshoe 13
w84~ 2 lmsh mat-13 11

shse
O g
cadif
endsdef

def o+ fagria) as
i {3 o NORM) and fasi) bon
RN
2.8 e NORM
i {a.an e 1) then

SR 1S vy R

of e splad g 982%
fidiod

6.6 e {Roet38Y 2

of v spia i olt
seneded

US 9,229,713 B2

shsoif Ga, e SNANT of (. ONANY or B8R o (R BNFRITTYY wnd {na=0l) the

T e R
olsoif Ca o ROER) o {a INFINITY) angd {asw 1) then
¢ o DEFAULTSHNAN Y lavalid

clse
sssent FALSE & sheold bave covered af the sxses alove
endi¥
enddel

FiG. 28 (cont)

U.S. Patent

Jan. 5§, 2016

Sheet 177 of 509

Operation codes

US 9,229,713 B2

E.ADD.F.16 Ensemble add floating-point half
E.ADD.F.16.C Ensemble add floating-point half ceiling
E.ADD.F.16.F Ensemble add floating-point half floor
E.ADD.F.16.N Ensemble add floating-point half nearest
E.ADD.F.16.X Ensemble add floating-point half exact
E.ADD.F.16.Z Ensemble add floating-point half zero
E.ADD.F.32 Ensemble add floating-point single
E.ADD.F.32.C Ensemble add floating-point single ceiling
E.ADD.F.32.F Ensemble add floating-point single floor
E.ADD.F.32.N Ensemble add floating-point single nearest
E.ADD.F.32.X Ensemble add floating-point single. exact
E.ADD.F.32.7 Ensemble add floating-point single zero
E.ADD.F.64 Ensemble add floating-point double
E.ADD.F.64.C Ensemble add floating-point double ceiling
E.ADD.F 64.F Ensemble add floating-point double floor
E.ADD.F.64.N Ensemble add floating-point double nearest
E.ADD.F.64.X Ensemble add floating-point double exact
E.ADD.F.64.Z Ensemble add floating-point double zero
E.ADD.F.128 Ensemble add floating-point quad
E.ADD.F.128.C Ensemble add floating-point quad ceiling
E.ADD.F.128.F Ensemble add floating-point quad floor
E.ADD.F.128.N Ensemble add floating-point quad nearest
E.ADD.F.128.X Ensemble add floating-point quad exact
E.ADD.F.128.2 Ensemble add floating-point quad zero
E.DIV.F.16 Ensemble divide floating-pcint half
E.DIV.F.16.C Ensemble divide floating-point half ceiling
E.DIV.F.16.F Ensemble divide floating-pcint half floor
E.DIV.F.16.N Ensemble divide floating-point half nearest
E.DIV.F.16.X Ensemble divide floating-point half exact
E.DIV.F.16.Z Ensemble divide floating-point half zero
E.DIV.F.32 Ensemble divide floating-paint single
E.DIV.F.32.C Ensemble divide floating-point single ceiling -
E.DIV.F.32.F Ensemble divide floating-point single floor
E.DIV.F.32.N Ensemble divide floating-point single nearest
E.DIV.F.32.X Ensemble divide floating-point single exact
E.DIV.F.32.Z Ensembile divide floating-point single zero
E.DIV.F.64 Ensembile divide floating-pcint double

FIG. 30A-1

U.S. Patent

Jan. 5, 2016

Sheet 178 of 509

EDIV.F.064.C Ensemble divide floating-point double ceiling
E.DIV.F.064.F Ensemble divide floating-point double floor
E.DIV.F.0684.N Ensemble divide floating-point double nearest
E.DIV.F.064.X Ensemble divide floating-point double exact
E.DIV.F.064.Z Ensemble divide floating-point double zero
E.DIV.F.128 Ensemble divide floating-point quad
E.DIV.F.128.C Ensemble divide floating-point quad ceiling
E.DIV.F.128.F Ensemble divide floating-point quad floor
E.DIV.F.128.N Ensemble divide floating-point quad nearest
E.DIV.F.128.X Ensemble divide floating-point quad exact
EDIV.F.128.2Z Ensemble divide floating-point quad zero
E.MUL.C.F.016 Ensemble multiply complex floating-point half
E.MUL.C.F.032 Ensemble multiply complex floating-point single
E.MUL.C.F.064 Ensemble multiply complex floating-point double
E.MUL.F.016 Ensemble multiply floating-point half
E.MUL.F.016.C Ensemble multiply floating-point half ceiling
E.MUL.F.016.F Ensemble multiply floating-point half fioor
E.MUL.F.016.N Ensemble multiply floating-point half nearest
E.MUL.F.016.X Ensemble multiply floating-point half exact
E.MUL.F.016.Z Ensemble multiply floating-point half zero
E.MUL.F.032 Ensemble multiply floating-point single
E.MUL.F.032.C Ensemble multiply floating-point single ceiling
E.MUL.F.032.F Ensemble multiply floating-point single floor
E.MUL.F.032.N Ensemble multiply floating-point single nearest
E.MUL.F.032.X Ensemble multiply floating-point single exact
E.MUL.F.032.Z Ensemble multiply floating-point single zero
E.MUL.F.064 Ensemble multiply floating-point double
E.MUL.F.064.C Ensemble multiply floating-point double ceiling
E.MUL.F.064.F Ensemble multiply floating-point double floor
E.MUL.F.064.N Ensemble multiply floating-point double nearest
E.MUL.F.064.X Ensemble multiply floating-point double exact
E.MUL.F.064.Z Ensemble muitiply floating-point double zero
E.MUL.F.128 Ensemble multiply floating-point quad
E.MUL.F.128.C Ensemble multiply floating-point quad ceiling
E.MUL.F.128.F Ensemble multiply floating-point quad floor
E.MUL.F.128.N Ensemble multiply floating-point quad nearest
E.MUL.F.128. X Ensemble multiply floating-point quad exact
E.MUL.F.128.Z Ensemble multiply floating-point quad zero

FIG. 30A-2

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 179 of 509 US 9,229,713 B2

E.MUL.SUM.C.F.016 Ensembie multiply sum complex floating-point half
E.MUL.SUM.C.F.032 Ensemble multiply sum complex floating-point single

E.MUL.SUM.F.016 Ensemble multiply sum floating-point half
E.MUL.SUM.F.032 Ensemble multiply sum floating-point single
E.MUL.SUM.F.064 Ensemble multiply sum floating-point double

FIG. 30A-3

U.S. Patent Jan. 5,2016 Sheet 180 of 509 US 9,229,713 B2

Selection
class op prec round/trap
add E.ADD.F 16 32 64 128 |nonNe CFNXZ
divide E.DIV.F 16 32 64 128 |noNe CEFNXZ
multiply E.MUL.F 16 32 64 12B|[NnoNe CFNXZ
complex multiply E.MUL.CF 16 32 64 NONE
multiply sum E.MUL.SUM.F |16 32 64 NONE
complex multiply E.MUL.SUM.C |16 32 NONE
sum F

Format

E.op.prec.rnd rd=rc,rb

rd=eopprecrnd(rc,rb)

31 24 23 18 17 12 11 6 5 0
| E.prec] rd { rc | rb | op.nd |
8 6 6 6 6

FIG. 30B

U.S. Patent Jan. 5,2016 Sheet 181 of 509 US 9,229,713 B2

Definition

def mul(size,v,i,w,)) as
mul « fmul(F(size, vsize- 1 +i..i),F(size,wsize-1+j.j))
enddef

def EnsembleFloatingPoint(op,prec,sound,ra,rb,rc) as
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
fori « O to 128-prec by prec
ci « F(prec,ci+prec-1..i)
bi « F(prec,bi+prec-1..1)
case op of
E.ADD.F: '
at « faddr(ci,bi,round)
E.MULF:
ai « fmul(ci,bi)
E.MUL.CF:
if (i and prec) then
ai « fadd{mul(prec,c,i,b,i-prec), mul{prec,c,i-prec,b,i))
else
ai « fsub(mul(prec,c,1,b,I), mul(prec,c,i+prec,b,i+prec))
endif
E.DIVF.
ai « fdiv(ci,bi)
endcase
ai+prec-1..i - PackF(prec, ai, round)
endfor
RegWrite(rd, 128, a)
enddef

FIG. 30C

U.S. Patent Jan. 5,2016 Sheet 182 of 509 US 9,229,713 B2

Definition

def mul(size,v,i,w) as
mul « fmul(F(size vsize-1+i..i).F(size,Wsize-1+). j))
enddef

def EnsembleFloatingPoint(op,prec,round,rd,re,rb) as
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
case op of
E.ADD.F:
for i « 0 to 128-prec by prec
ci « F(prec,Ci+prec-1..i)
bi < F(prec,bi+prec-1..i)
zi « faddr{ci,bi,round)
Zjsprec-1..i < PackF(prec, zi, round)
endfor
E.MUL.F:
for i « 0 to 128-prec by prec
ci « F(prec.Cisprec-1..i)
bi « F(prec,bi+prec-1..1)
Zi « fmul(ci,bi)
Zj+prec-1..i < PackF(prec, zi, round)
endfor
E.MUL.SUM.F:
p[0].t « NULL
for i « 0 to 128-prec by prec
ci « F(prec,Cisprec-1..i)
bi « F(prec,bi+prec-1..i)
pli+prec] « fadd(pli}, fmui(ci,bi))
endfor
Z « PackF(prec, p[128], round)
E.MUL.C.F:
for i « 0 to 128-prec by prec
if (i and prec) then
zi « fadd(mul(prec,c,i,b,i-prec), mul{prec,c,i-prec,b,i))
else
Zi « fsub(mul(prec,c,i,b,i), mul(prec,c,i+prec,b,i+prec))
endif
Zi+prec-1..i « PackF(prec, zi, round)
endfor
E.MUL.SUM.C.F:
p[0}.t « NULL
plprec].t « NULL
for i «— 0 to 128-prec by prec

FIG. 30D-1

U.S. Patent Jan. 5,2016 Sheet 183 of 509 US 9,229,713 B2

if (i and prec) then
2i « fadd(mul(prec,c,i,b,i-prec), mul(prec,c,i-prec,b,i))

else
zi « fsub{mul(prec,c,i,b,i), mul{prec,c,i+prec,b,i+prec))
endif
pli+prectprec] « fadd(p(i), zi)
endfor
z « PackF(prec, p[128+prec), round) || PackF(prec, p[128], round)

E.DIV.F.:
for i « 0 to 128-prec by prec
ci « F(prec,Ci+prec-1..)
bi « F(prec,bi+prec-1..i)

zi « fdiv(ci,bi)
Zi+prec-1..j + PackF(prec, zi, round)
endfor
endcase
RegWrite(rd, 128, z)
enddef

FIG. 30D-2

U.S. Patent Jan. 5,2016 Sheet 184 of 509 US 9,229,713 B2

Exceptions

Floating-point arithmetic

FIG. 30E

U.S. Patent

QOperation codes

Jan. 5§, 2016

Sheet 185 of 509

US 9,229,713 B2

E.SUBF.16 Ensemble subiract floating-point half
E.SUB.F.16.C Ensemble subtract floating-point half ceiling
E.SUB.F.16.F Ensemble subtract floating-point half floor
E.SUB.F.16.N Ensemble subtract floating-point half nearest
E.SUBF.16.Z Ensemble subtract floating-point half zero
E.SUBF.16.X Ensemble subtract floating-point half exact
E.SUB.F.32 Ensemble subtract floating-point single
E.SUB.F.32.C Ensemble subtract floating-point single ceiling
E.SUB.F.32F Ensemble subtract floating-point single floor
E.SUB.F.32.N Ensemble subtract floating-point single nearest
E.SUB.F.32.2 Ensemble subtract floating-point single zero
E.SUBF.32.X Ensemble subtract floating-point single exact
E.SUB.F.64 Ensemble subtract floating-point double
E.SUB.F.64.C Ensemble subtract floating-point double ceiling
E.SUB.F.64 F Ensemble subtract floaling-point double floor
E.SUBF.64 N Ensemble subtract floating-point double nearest
E.SUB.F.64.Z Ensemble subtract floating-point double zero
E.SUB.F.64.X Ensemble subtract floating-point double exact
E.SUB.F.128 Ensemble subtract floating-point quad
E.SUB.F.128.C Ensemble subtract floating-point quad ceiling
E.SUB.F.128.F Enscmble subtract floating-point quad floor
E.SUB.F.128.N Ensemble subtract floating-point quad nearest
E.SUB.F.128.Z Ensemble subtract floating-point quad zero
E.SUB.F.128.X Ensemble subtract floating-point quad exact

FIG. 31A

U.S. Patent Jan. 5,2016 Sheet 186 of 509 US 9,229,713 B2
Selection
class op prec round/trap
set SET. 16 32 64 128 |noneX
E LG
L GE
subtract | SUB 16 32 64 128 {noneCENXZ
Format
E.op.prec.round rd=rb,rc
rd=copprecround(rb,rc)
31 24 23 18 17 12 11 6 5 0
f E.prec | rd | re | rb] op.round |
8 [6 6 6

FIG. 31B

U.S. Patent Jan. 5,2016 Sheet 187 of 509 US 9,229,713 B2

def EnsembleReversedFloatingPoint(op,prec,round,rd,rc,rb) as
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
fori «— O to 128-prec by prec
¢l < F(prec,Ci+prec-1..i)
bi < F(prec,bi+prec-1..i)
zZi <« frsubr(ci,-bi, round)
Zi+prec-1..i < PackF(prec, zi, round)
endfor
RegWrite(rd, 128, 2)
enddef

FIG. 31C

U.S. Patent

US 9,229,713 B2

Jan. 5, 2016 Sheet 188 of 509
Operation codes
X.COMPRESS.2 Crossbar compress signed pecks
X.COMPRESS .4 Crossbar compress signed nibbles
X.COMPRESS.8 Crossbar compress signed bytes
X.COMPRESS.16 Crosshar compress signed doublets
X.COMPRESS.32 Crossbar compress signed quadlets
X.COMPRESS .64 Crossbar compress signed octlets
X.COMPRESS.128 Crossbar compress signed hexlet
X .COMPRESS.U.2 Crossbar compress unsigned pecks
X.COMPRESS.U.4 Crossbar compress unsigned nibbles
X_COMPRESS.U 8 Crossbar compress unsigned byiss
X.COMPRESS.U.16 Crossbar compress unsigned doublets
X.COMPRESS.U.32 Crossbar compress unsigned quadlets
X.COMPRESS.U.64 Crossbar comptess unsigned octlets
X.COMPRESS.U.128 Crossbar compress unsigned hexlet
X EXPAND.2 Crossbar expand signed pecks
XEXPAND.4 Crossbar expand signed nibbles
X.EXPAND.8 Crossbar expand signed bytes
X EXPAND.16 Crossbar expand signed doublets
X EXPAND.32 Crossbar expand signed quadlets
X EXPAND.64 Crossbar expand signed ocllets
X EXPAND.128 Crossbar expand signed hexlet
X EXPAND.U.2 Crossbar expand unsigned pecks
X EXPAND U4 Crossbar expand unsigned nibbles
X EXPAND.U.8 Crossbar expand unsigned bytes
X.EXPAND.U.16 Crossbar expand unsigned doublets
X.EXPAND.U.32 Crossbar expand unsigned quadlets
X.EXPAND .U .64 Crossbar expand unsigned octlets
X EXPAND U.128 Crossbar expand unsigned hexlet
X.ROTL.2 Crossbar rotate left pecks
X.ROTL 4 Crossbar rotate left nibbles
X.ROTL.8 Crossbar rolate left bytes
X.ROTL.16 Crossbar rotate left doublets
XROTL.32 Crossbar rotate left quadlets
X ROTL.64 Crossbar rotate left octlets
X.ROTL 128 Crossbar rotate left hexlet
X.ROTR.2 Crossbar rotate right pecks
X ROTR 4 Crossbar rotate right nibbles
XROTR 8. Crossbar rotate right bytes
X.ROTR.16 Crossbar rotate right doublets

FIG. 32A-1

U.S. Patent

US 9,229,713 B2

Jan. 5, 2016 Sheet 189 of 509
X.ROTR.32 Crossbar rotate right quadlets
X.ROTR.64 Crossbar rotate right octlets
X.ROTR.128 Crossbar rotate right hexlet
X.SHL.2 Crossbar shift left pecks
X.SHL.2.0 Crossbar shift left signed pecks check overflow
X.SHL .4 Crossbar shift left nibbles
X.SHL.4.0 Crossbar shift left signed nibbles check overflow
X.SHL.8 Crossbar shift left bytes
X.SHL.8.0 Crossbar shift left signed bytes check overflow
X.SHL.16 Crossbar shift left doublets
X.SHL.16.0 Crossbar shift left signed doublets check overflow
X.SHL .32 Crossbar shift left quadlets
X.SHL.32.0 Crossbar shift left signed quadlets check overflow
X.SHL.64 Crossbar shift left octiets
X.SHL.64.0 Crossbar shift left signed octlets check overflow
X.SH1..128 Crossbar shift left hexlet
X.SHL.128.0 Crossbar shift left signed hexlet check overflow
X.SHL.U.2.0 Crossbar shift left unsigned pecks check overflow
X.SHL.UA.0 Crossbar shift left unsigned nibbles check overflow
X.SHL.U.8.0 Crossbar shift left unsigned bytes check overflow
X.SHL.U.16.0 Crossbar shift left unsigned doublets check overflow
X.SHL.U.32.0 Crossbar shift left unsigned quadlets check overflow
X.SHL.U.64.0 Crossbar shift left unsigned octlets check overflow
X.SHL.U.128.0 Crossbar shift left unsigned hexlet check overflow
X.SHR.2 Crossbar signed shift right pecks
X.SHR.4 Crossbar signed shift right nibbles
X.SHR.3 Crossbar signed shift right bytes
X.SHR.16 Crossbar signed shift right doublets
X_SHR.32 Crossbar signed shift right quadlets
X_.SHR.64 Crossbar signed shift right octlets
X.SHR.128 Crossbar signed shift right hexlet
X.SHR.U.2 Crossbar shift right unsigned pecks
X.SHR.U 4 Crossbar shift right unsigned nibbles
X.SHR.U.8 Crossbar shift right unsigned bytes
X.SHR.U.16 Crossbar shift right unsigned doublets
X.SHR.U.32 Crossbar shift right unsigned quadlets
X.SHR.U.64 Crossbar shift right unsigned octlets
X SHR.U.128 Crossbar shift right unsigned hexlet

FIG. 32A-2

U.S. Patent Jan. 5,2016 Sheet 190 of 509 US 9,229,713 B2
Redundancies
[X.ROTR.size rd=rd,rb < X.SHR.M.size rd@rd,rb)
Selection
class op size
precision EXPAND EXPAND.U 24816 32 64 128
COMPRESS
COMPRESS.
U
shift ROTR ROTL SHR SHL 24816 32 64 128
SHL.O SHL.U.O
SHR.U
Format
X.op.size rd=rc,rb
rd=xopsize(rc,rb)
31 252423 18 17 12 11 6 5 21 0
| XSHIFT s rd] rc | rb | op |sz}
7 1 6 6 6 4 2

Isize « log(size)
S « Isize2
sz « Isizeq. o

FIG. 32B

U.S. Patent Jan. 5,2016 Sheet 191 of 509 US 9,229,713 B2

Definition

def Crossbar(op,size,rd,rc,rb)
¢ « RegRead(rc, 128)
b «+ RegRead(rb, 128)
shift « b and (size-1)
case ops_o || 02 of
X.COMPRESS:
hsize « size/2
for i « O to 64-hsize by hsize
if shift < hsize then
Zi+hsize-1..i < Ci+i+shift+hsize-1..i+i+shift

else
Zishsize-1..i < CPSISIZ || Cisivsize-1.i+i+shift
endif
endfor
z127.64«< 0
X.COMPRESS.U:

hsize « size/2
for i « 0 to 64-hsize by hsize
if shift < hsize then
Zi+hsize-1..i €~ Ci+i+shift+hsize-1..i+i+shift
else
Zishsize-1..i « OSNFNSIZE || ¢y cive 1 inisshift
endif
endfor
Z127.64 0
X.EXPAND:
hsize « size/2
for i « 0 to 64-hsize by hsize

if shift < hsize then
Zi+i+size-1..i+ cfl %?z'gl‘{“ [l Ci+hsize-1..i I oshift
else
Zisi+size-1..+i ¢ Cissize-shifi-1..i Il 051
endif
endfor
X.EXPAND.U:

hsize « size/2
for i « 0 to 64-hsize by hsize
if shift < hsize then
Zisitsize-1.i+i ONsiZe-shift | ¢, o o o q.; 1] OSDIft
else

Zivitsize-1.i+i < Cissize-shift-1..i f| OSTM

FIG. 32C-1

U.S. Patent Jan. 5,2016 Sheet 192 of 509 US 9,229,713 B2

endif
endfor
X.ROTL:

for i «— 0 to 128-size by size

Zitsize-1..i < Ci+size-1-shift..i || Ci+size-1..i+size-1-shift
endfor
X.ROTR:

fori « 0 to 128-size by size
Zitsize-1..i = Ci+shift-1..i | Citsize-1..i+shift

endfor
X.SHL:
for i « 0 to 128-size by size
Zissize-1..i < Ci+size-1-shift..i Il oshift
endfor
X.SHL.O:

for i « 0 to 128-size by size
if Civsize-1.i+size-1-shift # CHfUisaI1-shift then
raise FixedPointArithmetic
endif
Zj+size-1..i < Ci+size-1-shift..ill oshift
endfor
X.SHL.U.O:
for i « 0 to 128-size by size
if Ci+size-1..i+size-shift # 05N then
raise FixedPointArithmetic
endif
Zitsize-1..i ¢ Ci+size-1-shift..ifl OSP
endfor
X.SHR:
for i « 0 to 128-size by size
Zi+size-1..i € clsps'g.e-1 I Cissize-1..i+shift
endfor
X.SHR.U:
for i «- 0 to 128-size by size
Zissize-1.i ¢ O || Ciygize 1. jvshif
endfor
endcase
RegWrite(rd, 128, z)
enddef

FIG. 32C-2

U.S. Patent Jan. 5,2016 Sheet 193 of 509 US 9,229,713 B2

I e I 5050 1 I 20 e

IXEr Y SN YT

Compress 32 bits to 16, with 4-bit right shift

FIG. 32D

U.S. Patent Jan. 5,2016 Sheet 194 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 32E

U.S. Patent Jan. 5,2016 Sheet 195 of 509 US 9,229,713 B2

Operation codes

[X.EXTRACT | Crossbar extract |

Format

X.EXTRACT ra=rd,rc,rb

ra=xextract(rd,rc,rb)
31 24 23 18 17 12 11 6 5 0
| X.EXTRACT | rd | rc | rb | ra |
8 6 6 6 6

FIG. 33A

U.S. Patent Jan. 5,2016 Sheet 196 of 509

Definition

def CrossbarExtract(op,ra,rb,rc,rd) as
d « RegRead(rd, 128)
¢ ¢ RegRead(rc, 128)
b + RegRead(rb, 128)
case bg g of
0..255:
gsize « 128
256..383:
gsize « 64
384..447:
gsize « 32
448.479:
gsize « 16
480..495:
gsize « 8
496,.503:
gsize « 4
504..507:
gsize « 2
508..511:

gsize ¢ 1
endcase

m++by2

as « signed «— b4

h « (2-m)*gsize

spos - (bg, 0) and ((2-m)*gsize-1)
dpos « (0] b23..16) and (gsize-1)
sfsize « (0| b31..24) and (gsize-1)

thsize « (sfsize = 0) or ((sfsize+dpos) > gsize) ? gsize-dpos : sfsize

fsize « (tfsize + spos > h) 7 h - spos : tfsize
for i « 010 128-gsize by gsize
case op of
X.EXTRACT:
if m then
P < dgsizeti-] i
else
p « (@]l ©)2%(gsizeHi)-1..2%
endif

endcase
v & (as & ph-1)lp

W & (as & Vspog+Hize-1)85126T51260P0S || vicize 1 ispos. spos Il 09POS

if m then

US 9,229,713 B2

asize-1+i..1 €= Cgsize-1+i..dpos+fsize+i I| Wdpos+Esize-1..dpos | €dpos-1+1..i

else
agize-l+i.1 €W
endif
endfor
RegWrite(ra, 128, a)
enddef

FIG. 33B

U.S. Patent Jan. 5,2016

Sheet 197 of 509 US 9,229,713 B2
_ fsize _ spos
s,t rd rellrb
- 2* gsize .
- size \ -
s ab 0 rd
_ fsize dpos

Crossbar extract

_ fsize spos

st rd re

B gsize _

- \- \- -
rb
b a b rd

fsize dpos
Crossbar merge extract

FIG. 33D

U.S. Patent

Jan. 5§, 2016

Sheet 198 of 509

fsize ————»€————— spos

st

rd

gsize

y

\

4—— fsize ——>4— dpos —

Crossbar expand extract

FIG. 33E

US 9,229,713 B2

rc

ra

U.S. Patent

Jan. 5, 2016 Sheet 199 of 509

Definition

def CrossbarExtract(op,ra,rb,rc,rd) as
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
b « RegRead(rb, 32)
case bg_g of
0..255:

256..

384..

448..

480..

496..

504..

508..

endcase
m« bqy

gsize « 128
383:

gsize « 64
447:

gsize « 32
479:

gsize « 16
495:

gsize « 8
503:

gsize « 4
507:

gsize « 2
511:

gsize « 1

zs « signed « bqg

X ¢~ b1z

h « (2-(m or x))*gsize
spos « (bg_ o) and ({(2-m)*gsize-1)
dpos « (0|} b23_.16) and (gsize-1)
sfsize « (0 |} ba1..24) and (gsize-1)
tfsize « (sfsize = 0) or ((sfsize+dpos) > gsize) ? gsize-dpos : sfsize
fsize « ({fsize + spos > h) ? h - spos : tfsize
fori « 0O to 128-gsize by gsize
case op of

X.EXTRACT:
if mor x then
P « Cgsize+i-1..i
else
p « (c |l d)2*(gsize+i)-1..2%
endif

endcase
Vep

We(zs & Vspos+fsize_1)gsize-fsizedpos | Visize-1 +$p0OS..5pos (] odpos

if m then

FIG. 33F-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 200 of 509 US 9,229,713 B2

Zgsize-1+i..i « Ugsize-1+i..dpos+size+i Il Wdpos+fsize-1..dpos |l ddpos-1+1..i
else
Zgsize-1+i.0 < W
endif
endfor
RegWrite(ra, 128, z)
enddef

FIG. 33F-2

U.S. Patent Jan. 5,2016 Sheet 201 of 509 US 9,229,713 B2

Exceptions

none

FIG. 33G

U.S. Patent Jan. 5,2016 Sheet 202 of 509 US 9,229,713 B2

X.SHUFFLE 4 Crossbar shuffle within pecks
X.SHUFFLE.8 Crossbar shuffle within bytes
X.SHUFFLE.16 Crossbar shuffle within doublets
X.SHUFFLE.32 Crossbar shuffle within quadlets
X.SHUFFLE.64 Crossbar shuffle within octlets
X SHUFFLE.128 Crossbar shuffle within hexlet
X_.SHUFFLE.256 Crossbar shuffie within triclet

FIG. 34A

U.S. Patent Jan. 5,2016 Sheet 203 of 509 US 9,229,713 B2

Format

X.SHUFFLE.256 rd=rc,rb,v,w,h
X_.SHUFFLE size rd=rcb,v,w

rd=xshuffle256(rc,rb,v,w,h)
rd=xshufflesize(rcb,v,w)

31 24 23 18 17 12 11 6 S]
| XSHUFFLE | rd [re | rb I op |
g

rc « rb ¢ rcb
x¢e-logg(size)

y<loga(v)
ze-loga(w)

op ¢ ((x*x*x-3*x*x-4*X)/6-(z*2-2)/2+x*zty) + (size=256)*(h*32-56)

FIG. 34B

U.S. Patent Jan. 5,2016 Sheet 204 of 509 US 9,229,713 B2

Definition

def CrossbarShuffle(major,rd,rc,rb,op)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
if re=rb then
case op of
0..55:
forx « 2t0 7, fory « 010 x-2; for z « 1 to x-y-1
if op = ((x*x?*x-3*x*x-4*x)/6-(z*2-z)/2+x*2+y) then
fori « 010127

2 & Cfig, x [tyrz-1.y Hix-b..y+zlliy-1..0)
end
. endif
endfor; endfor; endfor
56..63:
raise ReservedInstruction
endcase
eiseif
case op4_0 of
0.27;
cb «cib
X« 8
h <« op5
fory « 0tox-2; for z « 1 to x-y-1
if opg. 0 = ((17%2-2*z)/2-8+y) then
for i« h*128 to 127+h*128
3i-h*128 ¢ CBliy4q] y |ix-1.y+z |l iy-1.0)
end
endif
endfor; endfor
28.31:
raise ReservedInstruction
endcase
endif
RegWrite(rd, 128, a)
enddef

FIG. 34C

U.S. Patent Jan. 5,2016 Sheet 205 of 509 US 9,229,713 B2

c] o
—
—e
o'
—
«©®
o™ ~
e :
2 5
— L
o M o
fod
—
— -t -
2]
_ = — ke
= - =
B 8= =
] = =
- = ~ [~1] %=
: Q S ~lz W
N o2 o S 2 o
—i <~ > =
— - D L
S Tlae) \
o -
8L Fle © 2O
= 2 — 30
}__‘ L2 - L]
>
S)
| z = =
<r -s
— H
] o
~ H ‘g._j._
[o8
N gt
— L 9—‘ e
-
-
bt
p—y
-oTJ
w
o~
b

U.S. Patent Jan. 5,2016 Sheet 206 of 509 US 9,229,713 B2

Operation codes

X.SHUFFLE Crossbar shuffle within hexlet
X.SHUFFLE.PAIR Crossbar shuffle within triclet

Format

X.SHUFFLE.PAIR rd=rc,rb,v,w,h
X.SHUFFLE rd=rcb,size,v,w

rd=xshufflepair (rc,rb,v,w,h)
rd=xshuffle(rcb,size,v,w)
31 24 23 18 17 12 11 6 5 0
| X.SHUFFLE | rd | rc | b | op |
8 6 6 6 6

For xshufflepair: size « 256
For xshuffle: rc < rb < rcb

x«loga(size)

y<«log2(v)
Z«logz(w)

Op « ((X*"X"x-3"X*x-4*x)/6-(2*z-2)/2+X*z+y) + (rc£rb)*(h*32-56)

FIG. 34F

U.S. Patent Jan. 5,2016 Sheet 207 of 509 US 9,229,713 B2

Definition

def CrossbarShuffle(major,rd,rc,ib,op)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
if rc=rb then
case op of
0..55:
forx «- 2to 7; for y - 0 to x-2; for z «— 1 to x-y-1
if op = ((x"x*x-3*x*x-4*x)/6-(z*z-z)/2+x*z+y) then
fori« Oto 127
i < Clig. x Il iy+z-1..y] ix-1..y+z Il iy-1..0)
end
endif
endfor; endfor; endfor
56..63:
raise Reservedinstruction
endcase
elseif
case opy_g of
0..27:
bc«bijc
X« 8
h « ops
fory « O to x-2; for z « 1 to x-y-1
if opg. 0 = ((17*2-z*z)/2-8+y) then
fori< h*128'to 127+h*128
aj-h*128 < bey
end
endif
endfor; endfor
28..31:
raise Reservedinstruction

y+2-1..y Il ix-1..y+z il iy-1..0)

endcase
endif
RegWrite(rd, 128, a)
enddef

FIG. 34G

U.S. Patent Jan. 5,2016 Sheet 208 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

FIG. 34H

US 9,229,713 B2

Sheet 209 of 509

Jan. 5§, 2016

U.S. Patent

vse "old

ejau} o0[o

[euonipuod

_F_o_O_W_W_M_M_M_M_M_M_M_MT !
hhhbhhhobhbh T

[L Tololololssjos[gs|{wsies|es|is]os|

|[OUOD
uoneisy|

¢0=

Y vV ¥V ¥V vV VvV ¥ ¥ ¥ PP
¥1 €1 21 LT 01 €M ZM M OM

suojessyl g Ul 8,..Z poWl M = S, SBA|0S

8 9 9 9 8

B AJosm Jed Ajos Ajod|eb, Ajodieb, Jouiwm

SIo[eD) SAI0S SPIM

U.S. Patent Jan. 5,2016 Sheet 210 of 509 US 9,229,713 B2

Wide Solve Galois

static v8_t wsolveg(v8_thh, v8_t syndrome, v8_t *omega)

for (r=0; r < N_PARITY; r++) /*: A+ 16* (B+A):%/
{

delta= _xcopyi8(delta0, 0);) /* 163X ¥/
delta0s = _castv8(_xshrm128(_castv128(delta0),_castv128(deltal),8)); M 16%X ¥/
deltals = _reindex8(deltal, -1); /¥ 16X Y
delta0 = _gxor8(_emulg8(gamma, deltals, hh),_emulg8(delta,thetad, hh)); /¥ 16%(2¥E+G) :¥/
deltal = _gxor8(_emulg8(gamma, deltals, hh),_emulg8(delta,thetal, hh)); /*:1 16%(2*E+G) :%/
s=_gsetandne8(delta, _gsetge8(k, gzero8)); /¥ 16%2%G) :%/
theta0 = _gmux8(s, delta0s,theta0); /%: 16*G) :*/
thetal = _gmux8(s, deltals,thetal); 1*:16*G) ¥/
gamma = _gmux8(s, delta,gamma); /% 16*G) :*/
k= _pmux8(s,_gnot8(k), gadd8(k, gone8)); /¥ 16#3*G) :*/
lamba = _xselect8(deltal delta0,USE_VCONST{lambdai)); /%X
omega = _castv8((_xwithdrawu128(_castv128(delta0), 64, 0)); /%X ¥

Figure 35B

U.S. Patent Jan. 5,2016 Sheet 211 of 509 US 9,229,713 B2

Figure 36A Wide FFT S|ice

{ _wminor [*data [*twiddl | fftpar | wfftslic |
8 6 6 6 6
R Bu y / Mux Strip]
Coefficient
@‘— X é—é RAM/ROM

Wide Cache Strip

X
Coefficie
®—®—‘ X Qb— RAMIROM

Butterfly / Mux Strip -

Butterfly / Mux Strip
Coefficient
RAM/ROM

| Wide Cache Strip l

Coefficient
RAM/ROM

[Butterfly / Mux Strip l

U.S. Patent Jan. 5,2016 Sheet 212 of 509 US 9,229,713 B2

/**/

/* DSP library module: Inverse FFT, selectable length, */
/* 16-bit complex integers, */
¥ split-radix algorithm */
/* */

/**/

/* includes files */
#include <stdio.h>
#include "broadmx.h"
#include “affirm.h"
#include "dspFFTud.h"
#include <math.h>

#define SHOW 0

/* typed version of _gboolean: should be part of gops */
static INLINE v16_t _gboolean16(v16 tsrcl, v16_tsrc2, v16 tsrc3, int imm)

{
return _gboolean(srcl.rr, src2.1r, sre3.1r, imm).v16; .

}

/*

I(a-b)/2

*/

static inline vcl6 t _sub mul by i c16(vcl6 taa, vel6 t bb)

{
v16_t muxmask =_castv16(_goopyi32(0xFFFF));
v16_t xx;

/* xx =_gsubhl6n(_gmux16(muxmask,aa,bb), gmux16(muxmask,bb,aa));*/
xx = _gsubh16n(_gxorl6(muxmask,bb), gxorl6(muxmask,aa));

xx = _xswizzlel6(xx, 7, 1);

return xx;

Fig. 36B

U.S. Patent Jan. 5,2016 Sheet 213 of 509 US 9,229,713 B2

/*
* Perform 4 independent 4-point fft's
*
* x0..x3 holds the input to the transform, 4 sets of 4 complex numbers.
* Each set is inverse-fourier transformed independently of the others.
* The results appear in x0..x3. The original values of y0..y3 are corrupted.

*/
#define QUAD IFFT 4PT cl6(y0, yl1, y2, y3, x0, x1, x2, x3) {\
_y0=_gaddh16n(_x0,_x2); \

_yl =_gaddhlén(_x1, x3); \
_y2=_gsubhl6én{ x0, x2); \
_y3=_sub_mul_by i _cl6(_x1, 3); \
_x0=_gaddhl6n(_y0, yl); \
_x2=_gsubhlén(_y0,_yl); \
_x1=_gaddhl6n(y2, y3); \
_x3 =_gsubhlén(_y2, y3); \

}

/ *

* Perform 4 independent 24-point fft's

%

* x0..x13 holds the input to the transform, 4 sets of 24 complex numbers.
* Each set is inverse-fourier transformed independently of the others.

* The results appear in y0..y1.

*/
#define QUAD _IFFT 2PT cl6(y0, yl, x0, x1) {\
_y0=_gaddhl6n(_x0, x2); \
_yl =_gaddhlén{ x1,_x3); \
}

Fig. 36B (cont)

U.S. Patent Jan. 5,2016 Sheet 214 of 509 US 9,229,713 B2

static int_wifslicec16(vcl6_t *dp, vcl6_t “tp, int dn, int ds, int tn, int radix, int reorder, int extract)
{

int 1,j,1i, logmost;

vel6_t *dwp, *twp;

vel6_t0,t1,2,t3, d0,d1,d2,d3, p0,pl,p2,p3, 20,21,22,23, m, n,

if(SHOW) printf
9"extract = %d\n" extract&0xf);
n=m = gcopyil6(0);
if (radix==4) {
if (ds==1) {
for (twp=tp,i=0; i<tn; dp-++,twp++,i+=NELEMCI16) {
t0 = twp[0];
d0 = dp[0];
p0 = emulx16(t0,d0,extract);
20 = _xshril6(p0,1);
n=_gboolean16(n,p0,z0,0x{6);
d0 = vput16(d0,0,(_vget16(p0,0)+_vget16(p0,2)+ vgetl6(p0,4)+_vgetl16(p0,6)+2)>>2);
d0 = vput16(d0,1,(_vgetl6(p0,1)+_vget16(p0,3)+ vgetl 6(p0,5)+_vgetl6(p0,7)+2)>>2);
d0 = vput16(d0,4,(_vget16(p0,0)-_vget16(p0,2)+ vget16(p0,4)+ vget16(p0,6)+2)>>2);
d0 = vput16(d0,5,(_vget1 6(p0,1)-_vget16(p0,3)+_vget16(p0,5)+_vget16(p0,7)+2)>>2);
do0 = vput16(d0,2,(_vget1 6(p0,0)-_vgetl 6(p0,3)-_vgetl 6(p0,4)+_vgetl 6(p0,7)+2)>>2);
d0 = vput16(d0,3,(_vgetl6(p0,1)+ vget16(p0,2)- vgetl5(p0,5)+ vgetl 6(p0,6)+2)>>2);
d0 = vput16(d0,6,(_vgetl6(p0,0)+_vgetl6(p0,3)-_vgetl6(p0,4)+_vgetl 6(p0,7)+2)>>2);
d0 = vput16(d0,7,(_vgetl6(p0,1)-_vgetl6(p0,2)-_vgetl6(p0,5)+_vgetl 6(p0,6)+2)>>2);
20 = _xshril6(d0,1);
m=_gboolean16(m,d0,z0,0x{6);
dp[0] = do;
}
} else {
ii = ds / NELEMC16;
for (twp=tp,i=0; 1<tm; dp++twp++,it=4 *NELEMC16) {
t0 = twp[0*ii];
t1 = twp[1*i];
12 = twp[2*ii);
t3 = twp[3*ii);
for (dwp=dpj=0; j<dn; dwp+=4*iij+=4*ds) {
do = dwp[0*ii);
d1 = dwp[1*ii];
d2 = dwp[2*ii];
d3 = dwp[3*ii];
d0 = _emulx16(t0,d0, extract); // can be eextract
dl = _emulx16(t1,d1, extract);
d2 = _emulx16(t2,d2, extract);
d3 = _emulx16(t3,d3, extract);
z0 = _xshri16(d0,1);
zl = xshril6(dl,1);
72 = xshril6(d2,1);
z3 = _xshril6(d3,1);
n=_gbooleanl6(n,d0,z0,0x6);
n=_gboolean16(n,d1,z1,0xf6);
n=_ghooleanl6(n,d2,22,0x{6);
n =_gboolean16(n,d3,23,0xf6);

Fig. 36B (cont)

U.S. Patent

Jan. 5, 2016 Sheet 215 of 509

QUAD _1FFT_4PT c16(p0,pl,p2,p3, d0,d1,d2,d3);

z0 =_xshri16(d0,1);
zl = _xshril6(d1,1);
22 = _xshril6(d2,1);
z3 = xshril6(d3,1);
m=_gbooleanl6(m,d0,z0,0xf6);
m=_gboolean16(m,d1,z1,0xf6);
m=_gboolean16(m,d2,z2,0xf6);
m=_gboolean16(m,d3,z3,0x{6);
dwp[0*ii] = dO;
dwp[1*ii] =d1;
dwp[2*ii] = d2;
dwp[3*ii] = d3;
}

}

}
} else if (radix==2) {
ii = ds/ NELEMCI6;
for (twp=tp,i=0; i<tn; dp++,twp++,i+=2*NELEMC16) {

}

10 = twp[0*ii];
t1 = twp[1*i];
for (dwp=dpj=0; j<dn; dwp+=2*iij+=2*ds) {
d0 = dwp[0*ii];
d1 =dwp[1*ii};
p0 =_emulx16(t0,d0, extract); / can be eextract
pl =_emulx16(t1,d1, extract);
z0 = _xshril6(p0,1);
z1 = _xshril6(pl,1);
n = _gboolean16(n,p0,20,0x{6);
n=_gboolean16(n,pl,z1,0xf6);
QUAD _1FFT 2PT c16(d0,d1, p0,pl);
z0 = _xshri16(d0,1);
z1 = _xshril6(dl,1);
m =_gboolean16(m,d0,z0,0x£6);
m=_gboolean16(m,d1,z1,0x{6);
dwp[0*ii} = dO;
dwp[1*ii] = d1;
}

}else {
for (j=0; j<dn; dp++,tp++j+=NELEMCI16) {

}

*dp = d0 =*tp;
z0 = _xshril6(d0,1);
m = _gboolean16(r,d0,z0,0x{6);

n=m;

}

Fig. 36B (cont)

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 216 of 509 US 9,229,713 B2

n=_gorl6(n,_castv16(xshriul28(castv128(n),64)));
n=_gorl6(n,_castvl6(_xshriul28(_castv128(n),32)));
n=_gorl6(n,_castvl16(_xshriul28(_castv128(n),16)));
logmost = _vget16(_elogmost16(n),0);

if(SHOW) printf("logmost = %d (after muix)\n",logmost);
m=_gorl6(m,_castv16(_ xshriul28(castv128(m),64)));
m =_gorl6(m,_castvl16(_xshriul28(castv128(m),32)));
m = _gorl6(m,_castv16(_xshriul28(castv128(m),16)));
logmost = _vgetl16(_elogmost16(m),0);

1f(SHOW) printf("logmost = %d (after addh)\n",logmost);
return logmost;

}

static cplxl6 const exptab{][4] =
#define IFFT_COEFS_16

#include "dsplFFT-coefs.h"

#undef 1FFT_COEFS_16

3

static. void make_twiddle(cplxil6 *tw, int ni, int nj, int len, int show)

{

int 1, jj;

for(ii = 0; ii < ni; ++ii) {
for(jj = 0; jj < nj; ++jj) {
tw->re = rint(-32768*cos(2*M_P1/len*ii%jj));
tw->im = rint(-32768*sin(2*M_P1/len*ii%jj));
if(show) printf{"twiddle[%d)(%d] = (%7d,%7d)\n", ii, jj, tw->Te, tw->im);
++tw;
}
}
}

int dspInverseFourier_slice_c16(cplxil6 *out, cplxil6 const *in, int len)
{

int logmost, extract, scale;

static eplxil6 twidtab[12][1024];

inti, j, X, 1

int ds, tn;

for(i = 0;i < len; ++i) {
twidtab[0][i],re = -32768;
twidtab[0]{i].im = 0;

}

make_twiddle(&twidtab{1][0], 4, 4, 16, 0);
make_twiddle(&twidtab[2][0], 4, 16, 64, 0);
make_twiddle(&twidtab[3][0], 4, 64, 256, 0);
make_twiddle(&twidtab[4][0], 2, 256, 512, 0);

Fig. 36B (cont)

U.S. Patent Jan. 5,2016 Sheet 217 of 509 US 9,229,713 B2

scale=0
logmost=0
if(len ==4) {

logmost = _wifslicec16(vc16_t*)out, (vel6_t *)in, len, 0, 0, 1, 0, 0);

scale =16 — logmost;

extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);

logmost = _wiffslicec16(vc16_t*)out, (vel6_t *)twidtab[0], len, 1, len, 4, 0, extract);
} else if{len == 16) {

logmost = _wifslicec16(vec16_t*)out, (vel6_t *}in, len, 0, 0, 1, 0, 0);

scale = 16 — logmost;

extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);

logmost = _wffslicec16(vcl16_t*)out, (vel6_t *)twidtab[0], len, 1, len 4, 0, extract);

scale += 16 — logmost;

extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);

logmost = _wffslicec16(vc16_t*)out, (vel6_t *)twidtab[1}, len, 4, 16, 4, 0, extract);
} else if(len == 64) {

logmost = _wffslicec16(vc16_t*)out, (vel6_t *)in, len, 0, 0, 1, 0, 0);

scale = 16 — logmost;

extract = (1<<14) + (1<<13) + (2<<9) +(512-4*16+logmost+1);

logmost = _wifslicec16(vc16_t*)out, (vcl6_t *)twidtab[0], len, 1, len, 4, 0, extract);

scale += 16 — logmost;

extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);

logmost =_wiffslicec16(ve16_t*)out, (vc16 t *)twidtab[1], len, 4, 16, 4, 0, extract);

scale += 16 — logmost;

extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);

logmost = _wffslicec16(vel6 | t*)out (vel6_t ¥)twidtab[2], len, 16, 64, 4, 0, extract);

scale =2;
} else if(len ==256) {

logmost = _wffslicec16(vc16_t*)out, (vel6_t *)in, len, 0, 0, 1, 0, 0);

scale = 16 — logmost;

extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);

logmost = _wifslicec16(vc16_t*)out, (vel6_t *)twidtab[0], len, 1, len, 4, 0, extract);

scale += 16 — logmost;

extract = (1<<14) + (1<<13) + (2<<9) + (512- 4*16+logmost+1),

logmost = _wffslicec16(vc16_t*¥)out, (vcl6_t *)twidtab{1], len, 4, 16, 4, 0, extract);

scale += 16 ~ logmost;

extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);

logmost = _wffslicec16(vc16_t*)out, (ve16_t *)twidtab[2], len, 16, 64, 4, 0, extract);

scale += 16 — logmost;

extract = (1<<14) + (1<<13) + (2<<9) + (512-4*1 6+logmosi+1);

logmost = _wffslicec16(vc16_t*)out, (ve16_t *)twidtab[3], len, 64, 256, 4, 0, extract);

scale -= 4;

Fig. 36B (cont)

U.S. Patent Jan. 5,2016 Sheet 218 of 509 US 9,229,713 B2

} else if{len = 512) {
logmost = _wifslicec16(vc16_t*)out, (vc16_t *)in, len, 0, 0, 1, O, 0);
scalc =16 — logmuost;
extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);
logmost = _wifslicec16(vcl16_t*)out, (vc16_t *)twidtab[0], len, 1, len, 4, O, extract);
scale += 16 — logmost;
extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);
logmost = _wffslicec16(vcl6_t*)out, (vel6_t *)twidtab{1], len, 4, 16, 4, 0, extract);
scale += 16 — logmost;
extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);
logmost = _wifslicec16(vc16_t*¥)out, (vc16_t ¥)twidtab[2], len, 16, 64, 4, 0, extract);
scale += 16 — logmost;
‘extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);
logmost = _wffslicec16(vc16_t*)out, (vcl6_t *)twidtab[3], len, 64, 256, 4, 0, extract);
scale += 16 — logmost;
extract = (1<<14) + (1<<13) + (2<<9) + (512-4*16+logmost+1);
logmost = _wifslicec16(vc16_t*)out, (vel6_t *)twidtab[4], len, 256, 512, 2, O, extract);
scale =7,

}
if{fSHOW) printf{"scale = %d\n",scale);
return scale;

Fig. 36B (cont)

U.S. Patent Jan. 5,2016 Sheet 219 of 509 US 9,229,713 B2

Format

W.CONVOLVE X order ra=rc,rd,1b

ra=wop(rc,rd,rb)
31 2423 1817 1211 65 0

| W.op | rd | re | rb | ra]
8 6 6 6 6

Fig. 37A

U.S. Patent Jan. 5,2016 Sheet 220 of 509 US 9,229,713 B2

Definition

def mul(size,h,vs,v.,,ws,w. j} as

mul ((vs&Vsize- 1452 | Vsize-14i.0) * ((""5‘35""size-lJr_i)h'size I Wsize-14j.j)
enddef

def WideConvolveExtract(op,ra,rbre,rd)
d « RegRead(rd, 64)
¢ « RegRead(rc, 64)
b « RegRead(rb, 128)
case bg g of
0..255:
sgsize « 128
256..383:
sgsize < 64
384..447:
sgsize « 32
448..479;
sgsize « 16
480..495:
sgsize « 8
496..503:
sgsize « 4
504..507:
sgsize « 2
508..511:
sgsize « |
endcase
I« b}y
m « by
n<« b3
signed « by4
X + bys
if (¢ 0= 0)or (dy_g+# 0) then
raise ReservedInstruction
endif
cwsize « (¢ and (0-c)) [} 05
ct «c and {(c-1)
cmsize « (ct and (O-ct)) }j 07
ca « ctand (ct-1)
lemsize « log(cmsize)
lewsize « log(cwsize)
cm + LoadMemory(c,ca,cmsize,order)
dwsize « (d and (0-d)} }| 05
dt « d and (d-1)
dmsize « (dt and (0-dt))] 04
da « dt and (dt-1)
ldmsize « log(dmsize)
Idwsize « log(dwsize)
dm « LoadMemory(d,da,dmsize,order)
if (sgsize < 8) or (sgsize > wsize/2) then
raise ReservedInstruction

Fig. 37B

U.S. Patent Jan. 5,2016 Sheet 221 of 509 US 9,229,713 B2

endif

gsize « sgsize

Igsize « log(gsize)

case op of
W.CONVOLVE.X.B:

order < B
W.CONVOLVE.X.L:

order <L
endcase

cs « signed

ds «signed *m

zs « signed orm orn

zsize « gsize*(x+1)

h « (2*gsize) + Idmsize - lgsize

spos « (bg_o) and (2*gsize-1)

dpos « (0 || b23_.16) and (zsize-1)

I < Spos

sfsize « (0 || b3y..24) and (zsize-1)

tfsize « (sfsize = 0) or ((sfsize+dpos) > zsize) ? zsize-dpos : sfsize
fsize « (tfsize + spos > h+1) ? h+1 - spos : tfsize
if (b10..9 = Z) and not zs then

md « F
else

md « byg.9
endif
mzero < bgs g4

mpos « bg3_32

00 < mpos || 03

OX < OO0jcwsize-1..lgsize
Oy € 00|cmsize-1..Icwsize
zzZ « (~mzero) || 13

ZX € ZZ|dwsize-1..Igsize
Zy < ZZldmsize-1. ldwsize

Fig. 37B (cont)

U.S. Patent Jan. 5,2016 Sheet 222 of 509 US 9,229,713 B2

for k « 0 to 128-zsize by zsize

i ¢ k*gsize/zsize

X ilcwsize-l..lgsize

iy « ljemsize-1. lewsize

ql0] - 0b

for j «— 0 to dmsize-gsize by gsize
i & n and jigsize and not ijgsize
JX € jidwsize-1. Igsize
JY € jidmsize-1..\dwsize

u « (oy+iy-jy)icmsize-lewsize-1..0 || (0X+iX-jX-2*[i)icmsize-1cwsize-1..0 |l olgsize
if (jx>zx) or (jy>zy) and (dmjgsjze-14j.j0) and undefined then
qli+gsize] « qlj]
else
if jj then
qlj+gsize] « qlj] - mul(gsize,h,cs,cm,u,ds,dm,j)
else
qlj+esize] « gfj] + mul(gsize,h,cs,cm,u,ds,dm,j)
endif
endif
endfor
p « g[dmsize]
case rnd of
none, N:
5« 00T —p || ~pi!
Z:
s ¢« oh-r i ph-1
F:
s« gh
C:
se o r
endcase
v« ((zs & pn-Dlip) + (Olis)
if (Vh. r+fsize = (25 & Vrafsize- DI 1777512€) or not 1 then
W (25 & Vrfsize-1)7526-15126-0POS | v y4p r]) 09POS
else
W (25 7 (Vﬁsizc-fsize-dposﬂHNVLSize-l) . ozsize—fsize-dpos“lfsize) i odpos
endif
Zzsize-1tk. .k € W
endfor ‘
RegWrite(ra, 128, z)
enddef

Fig. 37B (cont)

U.S. Patent Jan. 5,2016 Sheet 223 of 509 US 9,229,713 B2

vsize

gsize
. -
wsize

msize = wsize * vsize

spec = base + msize/16 + wsize/32

Wide operand specifier for wide convolve extract

FIG. 37C

US 9,229,713 B2

Sheet 224 of 509

Jan. 5§, 2016

U.S. Patent

a.le¢ 'oid

S19|qNOP JORJIXS SAJOAUOD SPIM

0=0lozW

91=uibus| >

9GZ=9ZISMP - >

0 (ggz=ozIswp) [pJJw Ggec
gy=sodw

Z15=92ISM0

J=9ZISAO C T T T T 1T T T 1
0 (z15=9z1swWo) [oJ]w

LG

US 9,229,713 B2

Sheet 225 of 509

Jan. 5, 2016

U.S. Patent

0d

N

0

=

(952) =
pw g
N

N

6G¢

4.¢ "Old

S}9]qNOP JOBLX SAJOAUOD 3PIA

(ze)lauhoenxe Lo | e | oo >
(2¢) [q]sodw >

o o ° ° °

8

4 F..&_x_e_ss 118

US 9,229,713 B2

Sheet 226 of 509

Jan. 5, 2016

U.S. Patent

4.¢€ "Old

S}2|gNOP J10B1XS SAJOAUOD SPIAA

=019ZW
-

€1=ybusj

9GZ=9ZISMp >
v R TR R i) NN O U B S B

" (96z=ozIswp) [p]w 7

g=sodw ———»

0

o R

| =BZISAD =

Z1G=92ZISmd

(z1g=2zI1swo) [o4]w

US 9,229,713 B2

Sheet 227 of 509

Jan. 5, 2016

U.S. Patent

O4¢ "Old

S)a|qNOp JOBIIXS BA|JOAUCD apIAA
0 (821)es 8¢l

ANWVHQ._HHONLHXU NG INE) LE)
— (z¢) []sodw —

o ° ° o ° o ° ° ° o °
A@WNV | ° ° ° 3 o ° °
HU.:E m ° ° ° ™ ° o °

M] ° ° o o °

-m.. o o o o ° o

N ; ° o | o ° ° °
gy =
mmNﬁ °] ° ° L] ° o o] o o o [} o o o ° °o L) °
0 (z19) [Aw

US 9,229,713 B2

Sheet 228 of 509

Jan. 5§, 2016

U.S. Patent

$=9ZISAp

7=09ZISAO «

H.€ "Old

[BUOISUSLWIP-OM] S}2|GNOP JOBJIXS SAJOAUOD BPIAA

0=0J82W

9GZ=9ZISMP

(¥20 TmN_mEE EE

89/ €01
gp=soduwi
ZLG=9ZISMD
0
9¢G1 " (Lb0z=0zISWo) [o]uw

US 9,229,713 B2

Sheet 229 of 509

Jan. 5§, 2016

U.S. Patent

FA%

[BUOISUSWIP-OM]} S}3|GNOP JOBAXD BAJOAUOD BPIAA

Ol
0

Ava mnhuwoml_u,xm JEEIEE) JLE) REDLE) BJ}X9

LE) 6 e

(z¢) [aulsodw

Y

89/
S
©;
QE
S H'o
Slte
TiE
E
49
€201 |15
951

(2102) o1 w Lv0cC

<F

US 9,229,713 B2

Sheet 230 of 509

Jan. 5§, 2016

U.S. Patent

r.e 'old

s1e|qnop xa|dwoo JoBIIXa BA|OAUOD SPIA

0=019ZW
gL=yibusj >
mmmlwn_m\s_u >
| =9ZISAD EEEETE=hr T (RS
0 Ammwle_mEE _P_HE GGc
gp=sodw >
2L G=8ZISMO — >

1=9ZISA0 C T T T T T T 1 iz e B 5T o sy AR
0 (z}.g=0z15W0) [o1]w LG

US 9,229,713 B2

Sheet 231 of 509

Jan. 5§, 2016

U.S. Patent

OA

N

)

=

(92) =
[pdjw w
£

e loT4

ALE "'Old

S18|gNOopP X2]dWo9 JOBIIXS SAJOAUOD SPIAA

Y

A.va [ou]sodw

-] o -] L] o

8¢l

26

(z1g)] w

LLS

U.S. Patent Jan. 5,2016 Sheet 232 of 509 US 9,229,713 B2

Operation codes

W.CONVOLVE.X.B Wide convolve extract big-endian
W.CONVOLVE.X.L Wide convolve extract little-endian

Selection
class op order
Convolve extract W.CONVOLVE.X B L
Format

W.CONVOLVE X .order ra=rc,rd,rb

ra= weolvolvexorder(rc,rd,rb)
31 2423 1817 1211 65 0
| w.op.order | rd | rc | rb | ra |
i 8 - 6 6 6 6

FIG. 37L

U.S. Patent Jan. 5,2016 Sheet 233 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

FIG. 37TM

U.S. Patent Jan. 5,2016 Sheet 234 of 509 US 9,229,713 B2

rgwre3s Wide Embedded Cache Coherency

Wide Unit Wide Unit
Producer Consumer

transfers under
coherence control
overlap operations

in background

.
%
Chd Te
04 .

. *
v .

.....
. .*
. o
“tesaenanes?

Memory and
110 System Cache Coherence

Contyoller

U.S. Patent Jan. 5,2016 Sheet 235 of 509

Definition

def eb « ebits(prec) as
case pref of
16:
eb« 5
32:
eb <« 8
64:
eb « 11
128:
eb « 15
endcase
enddef

def eb « ebias(prec) as
eb<« 0] 1ebits(prec)-1
enddef

def fb « fbits(prec) as
fb «— prec—1-eb
enddef

def a « F{prec, ai) as
a.S <« aiprec-1

ae « aiprec-2..foits(prec)
af « aipits(prec)-1..0
if ag = 1ebits(prec) then
if af = 0 then
a.t « INFINITY
elseif affbi(s(prec)-‘] then
a.t « SNaN
a.e « -fbits(prec)
a.f « 1) afits(prec)-2..0
else
a.t « QNaN
a.e « -fbits(prec)
af « af
endif
elseif ae = 0 then
if af = O then
at« ZERO
else
a.t <« NORM
a.e « 1-ebias(prec)-fbits(prec)

FIG. 39A-1

US 9,229,713 B2

U.S. Patent

Jan. 5, 2016 Sheet 236 of 509
af« 0] af
endif
else
a.t « NORM
a.e « ae-ebias(prec)-fbits(prec)
afe 1} af
endif
enddef
def a « DEFAULTQNAN as
as«0
a.l « QNAN
a.e « -1
afe1
enddef
def a « DEFAULTSNAN as
as+0
a.t « SNAN
a.e &« -1
afe1
enddef

def fadd(a,b) as faddr(a,b,N) enddef

def ¢ « faddr(a,b,round) as
if a.t=NORM and b.t=NORM then

/I d,e are a,b with exponent aligned and fraction adjusted

if a.e > b.e then
dea
et« Dbt
es«bs
e.e «a.e
ef«bf| 0aebe

else if a.e < b.e then
dt<at
d.s«a.s
de e« be
d.f « a.f||Obe-ae
e«b

endif

cted.t

ce«de

if d.s = e.s then
cs«ds
cfedf+ef

elseif d.f > e.fthen
cs«ds
cfedf-ef

FIG. 39A-2

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 237 of 509 US 9,229,713 B2

elseif d.f < e.f then
C.S«es
cf—ef-df
else
c.s «r=F
c.t « ZERO
endif
// priority is given to b operand for NaN propagation
elseif (b.t=SNAN) or (b.t=QNAN) then
ceb
elseif (a.t=SNAN) or (a.t=QNAN) then
cC+a
elseif a.t=ZERO and b.t=ZERO then
¢t « ZERO
C.S « (a.s and b.s) or (round=F and (a.s or b.s))
/I NULL values are like zero, but do not combine with ZERO 1o alter sign
elseif a.t=ZERO or at=NULL then
Ceb
elseif bt=ZERO or b.i=NULL then
Cea
elseif a.t=INFINITY and b.i=INFINITY then
ifa.s # b.s then
¢ «— DEFAULTSNAN // Invalid
else
cea
endif
elseif a.t=INFINITY then
c«a
elseif b.t=INFINITY then
ce«Db
else
assert FALSE // should have covered al the cases above
endif
enddef

def b « fneg(a) as
b.s « ~a.s
bt at
be «a.e
bf«alf
enddef
def fsub(a,b) as fsubr(a,b,N) enddef
def fsubr(a,b,round) as faddr(a,fneg(b),round) enddef
def frsub{a,b) as frsubr(a,b,N) enddef

def frsubr(a,b,round) as faddr(fneg(a),b,round) enddef

FIG. 39A-3

U.S. Patent Jan. 5,2016 Sheet 238 of 509 US 9,229,713 B2

def ¢ « fcom(a,b) as
if (@.t=SNAN) or (a.t=QNAN}) or (b.t=SNAN) or (b.t=QNAN) then
c«U
elseif a.t=INFINITY and b.t=INFINITY then
if a.s # b.s then
c«(as=0)?G:L
else
c«E
endif
elseif a.t=INFINITY then
c«(as=0)7G:L
elseif b.A=INFINITY then
c«(bs=0)?G:L
elseif a.t=NORM and b.t=NORM then
if a.s # b.s then
ce(as=0)?G: L
else
if a.e > b.e then
af—alf
bf « b.f]| pa.e-b.e
else
af « af]|obe-ae
bf «— b.f
endif
if af = bf then
ce«E-
else
c e« ((a.s=0)*(af >bf))? G :L
endif
endif
elseif a.t=NORM then
ce«(as=0)?G:L
elseif b.t=NORM then
c«(bs=0)?7G:L
elseif a.t=ZERO and b.t=ZERO then
c«E
else
assert FALSE // should have covered al the cases above
endif
enddef

def ¢ « fmul(a,b) as
if a.t=NORM and b.t=NORM then
cs«—as’bs
c.t « NORM
ce«—ae+be
cfaf*bf
/1 priority is given to b operand for NaN propagation
elseif (b.t=SNAN}) or (b.t=QNAN) then
cs«as”bs

FIG. 39A4

U.S. Patent Jan. 5,2016 Sheet 239 of 509

ct« bt
c.e« be
cfebi
elseif (a.t=SNAN) or (a.t=QNAN) then
cs«as’bs
cteat
c.e ¢« a.e
cfealf
elseif a.t=ZERO and b.t=INFINITY then
¢ < DEFAULTSNAN // Invalid
elseif a.t=INFINITY and b.t=ZERO then
¢ <« DEFAULTSNAN // Invalid
elseif a.t=ZERO or b.t=ZERO then
cs«<as™bs
¢t « ZERO
else
assert FALSE // should have covered al the cases above
endif
enddef

def c « fdivr(a,b) as
if a.t=NORM and b.t=NORM then
cs«as™bs
c.t « NORM
c.e «—a.e-b.e+ 256
cf « (a.f]) 0256) /b f
// priority is given to b operand for NaN propagation
elseif (b.t=SNAN) or (b.t=QNAN) then
cs«<as’bs
c.t« bt
cee«be
cf«bf
elseif (a.t=SNAN) or (a.t=QNAN) then
cs«as”bs
cl«at
c.e« a.e
cfeaf
elseif a.t=ZERO and b.t=ZERO then
¢ « DEFAULTSNAN // Invalid
eiseif a.t=INFINITY and b.t=INFINITY then
¢ « DEFAULTSNAN // Invalid
elseif a.t=ZERO then
cs«as’bs
c.t « ZERO
elseif a.t=INFINITY then
cs«—as’bs
c.t « INFINITY
else
assert FALSE // should have covered al the cases above
endif

FIG. 39A-5

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 240 of 509 US 9,229,713 B2

enddef

def msb « findmsb(a) as

MAXF « 218 J/ Largest possible f value after matrix multiply
for j «+ 0 to MAXF
if aMAXF-1.j = (OMAXF-14 || 1) then
msb « j
endif
endfor
enddef

def ai « PackF(prec,a,round) as
case a.t of
NORM:
msb « findmsb(a.f}
rn « msb-1-fbits(prec) // Isb for normal
rdn « -ebias(prec)-a.e-1-fits(prec) // Isb if a denormal
b« (rmn>rdn) 2 :rdn
if rb <0 then
aifr < a.fmsp-1.0 || 0
eadj« 0
else
case round of
C:
s « OMsb-1b || (~a.s)b
F:
s « QMsb-b] (a.s)’b
N, NONE:

S « 0MSOID || g £y || ~a.fp-1

X:

if a.frb-1._0 = 0 then
raise FloatingPointArithmetic // Inexact

endif
s«0

Z:
s« 0

endcase

vV « (O}la.fmsb.0) + (OlIs)
lf Vmsb = 1 then
aiff « Vmsb-1..rb
eadj « 0
else :
aifr « Qfbits(prec)
eadj « 1
endif
endif
aien « a.e + msb — 1 + eadj + ebias(prec)
if aien < 0 then

FIG. 39A-6

U.S. Patent Jan. 5,2016 Sheet 241 of 509 US 9,229,713 B2

if round = NONE then
ai « a.s || oebits(prec) | aifr
else
raise FloatingPointArithmetic //Underflow
endif
elseif aien > 16bits(Prec) then
if round = NONE then
/ldefault: round-to-nearest overflow handling
ai—as|| 1ebits(prec) f ofbits(prec)

else
raise FloatingPointArithmetic //Overflow
endif
else
ai « a.s || aienepits(prec)-1..0 Il aifr
endif
SNAN:

if round = NONE then
raise FloatingPointArithmetic //Invalid
endif
if —a.e < fbits(prec) then
aie—as|| qebits(prec) lafae1.0ll ofbits(prec)+a.e

else
Isb « a.f.3 ¢-1-its(prec)+1..0 # 0
ai « a.s || 1ebits(prec) | a.f.3.e-1.-a.e-1-its(prec)+2 || Isb
endif
QNAN:

if —a.e < fbits(prec) then
ai « a.s || 1ebits(prec) y a.f.ge-1_0 || Oits(prec)+a.e
else
Isb < a.f.3 e-1-fbits(prec)+1..0 # 0
ai « a.s || 1ebits(prec) | a.fa.e-1.-a.e-1-fits(prec)+2 || Isb
endif
ZERO:
ai—as|| gebits(prec) Il ofbits(prec)
INFINITY:
ai—as|| {ebits(prec) || ofbits(prec)
endcase
defdef

def ai « fsinkr(prec, a, round) as
case a.t of
NORM:

msb « findmsb(a.f)

h «-ae

if rb <0 then
aifr « a.fmsp. g]| 00
aims < msb-rb

else

FIG. 39A-7

U.S. Patent Jan. 5,2016 Sheet 242 of 509

case round of
C,C.D:
§ « O0MSb-1D || (~aj.s)P
F, F.D:
s « OMsbrb || (g 5)d
N, NONE:
§ « 0Msb-1b | 5 fy || ~ai.fig-1
X:
if ai.fyp.1.0 # O then
raise FloatingPointArithmetic // Inexact
endif
s« 0
Z,2.D:
s« 0
endcase
Vv « (0]la.fmsb..0) *+ (Olls)
if Vmsb =1 then
aims < msb+1-rb
else
aims <« msb -rb
endif
aifr « Vaims..ro
endif
if aims > prec then
case round of
C.D, F.D, NONE, Z.D:
ai « a.s || (~as)Prec-
C.,F.N, X, Z:
raise FloatingPointArithmetic // Overflow
endcase
elseif a.s = 0 then
ai « aifr
else
ai « -aifr
endif
ZERO:
ai « Qprec
SNAN, QNAN:
case round of
C.D, F.D, NONE, Z.D:

ai « gprec
C,F,N, X, Z:
raise FloatingPointArithmetic // Invalid
endcase
INFINITY:

case round of
C.D, F.D, NONE, Z.D:
ai « a.s || (~as)Prec-1
C,F,N, X, Z:

FIG. 39A-8

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 243 of 509

raise FloatingPointArithmetic // Invalid
endcase
endcase
enddef

def ¢ « frecrest(a) as
bse0
b.t « NORM
be«0
b.fée1
c <« fest(fdiv(b,a))
enddef

def ¢ « frsgrest(a) as

b.s« 0

b.t « NORM

b.e« 0

bfe«1

¢ « fest(fsqr(fdiv(b,a)))
enddef

def ¢ « fest{a) as
if (a.t=NORM) then
msb « findmsb(a.f)
ae«—aet+tmsb-13
af« afmsb.msb-12 1} 1
else
cC¢«a
endif
enddef

def ¢ « fsqr(a) as
if (a.t=NORM) and (a.s=0) then
cs«0
c.t « NORM
if (a.eg = 1) then
ce«(ae127)/2
c.f « sar(af|| 0127)
else
c.e « (a.e-128)/2
cf « sqr(af|} 0128)
endif

US 9,229,713 B2

elseif (a.1=SNAN) or (a.t=QNAN) or a.t=ZERO or ({a.I=INFINITY) and (a.s=0)) then

cC«a

elseif ((a.t=NORM) or (a.t=INFINITY)) and (a.s=1) then
¢ « DEFAULTSNAN // Invalid

else

assert FALSE // should have covered al the cases above
endif
enddef

FIG. 39A-9

U.S. Patent Jan. 5,2016 Sheet 244 of 509 US 9,229,713 B2

32-bit 2-way deal

FIG. 39B

U.S. Patent Jan. 5,2016 Sheet 245 of 509 US 9,229,713 B2

16-bit 4-way deal

FIG. 39C

U.S. Patent Jan. 5,2016 Sheet 246 of 509 US 9,229,713 B2

16-bit 2-way shuffle

FIG. 39D

U.S. Patent Jan. 5,2016 Sheet 247 of 509 US 9,229,713 B2

16-bit 4-way shuffle

FIG. 39E

U.S. Patent Jan. 5,2016 Sheet 248 of 509 US 9,229,713 B2

16-bit reverse

FIG. 39F

U.S. Patent Jan. 5,2016 Sheet 249 of 509 US 9,229,713 B2

Compress 32 bits to 16, with 4-bit right shift

FIG. 39G

U.S. Patent Jan. 5,2016 Sheet 250 of 509 US 9,229,713 B2

L | 1| 1| 1| L

Expand 16 bits to 32, with 4-bit left shift

FIG. 39H

U.S. Patent Jan. 5,2016 Sheet 251 of 509 US 9,229,713 B2

dp/

hexlet

octlet

I ‘
quadlet

ql]Jadlet

octlet

hexlet

triclet

Alignment within dp region

FIG. 391

U.S. Patent Jan. 5,2016 Sheet 252 of 509 US 9,229,713 B2

/ rc=1

/ rb=0 — %

/ rd=0

Bw3x2g3

code

/ $pc|-|p| ‘

r2 w2 x3 g0

gate

datap

\\ 2 w2 x3 g3

data

Gateway with pointers to code and data spaces

FIG. 39J

U.S. Patent Jan. 5,2016 Sheet 253 of 509 US 9,229,713 B2

Definition

def Thread(th) as
forever do
catch exception
if (EventRegister & EventMask[th]) # 0 then
if ExceptionState=0 then
raise Eventlnterrupt
endif
endif
inst «— LoadMemoryX(ProgramCounter,ProgramCounter,32,L)
Instruction(inst)
endcatch
case exception of
Eventinterrupt,
ReservedInstruction,
OperandBoundary,
AccessDisallowedByTag,
AccessDisallowedByGlobalTB,
AccessDisallowedByLocal TB,
AccessDetailRequiredByTag,
AccessDetailRequiredByGlobal TB,
AccessDetailRequiredByLaocal TB,
MissIinGlobal TB,
MissInLocalTB,
FixedPointArithmetic,
FloatingPointArithmetic,
GatewayDisallowed:
case ExceptionState of
0:
PerformException(exception)
I:
PerformException(SecondException)
2:
PerformMachineCheck(ThirdException)
endcase
TakenBranch:
ContinuationState < (ExceptionState=0) ? 0 : ContinuationState
TakenBranchContinue:

FIG. 40A-1

U.S. Patent Jan. 5,2016 Sheet 254 of 509 US 9,229,713 B2

/* nothing */
none, others:
ProgramCounter - ProgramCounter + 4
ContinuationState « (ExceptionState=0) ? 0 : ContinuationState
endcase

endforever
enddef

FIG. 40A-2

U.S. Patent Jan. 5,2016 Sheet 255 of 509 US 9,229,713 B2

Definition

def PerformException(exception) as

v « (exception > 7) ? 7 : exception

t « LoadMemory(ExceptionBase,ExceptionBase+Thread*128+64+8*v,64,L)

if ExceptionState = 0 then
u « RegRead(3,128) || RegRead(2,128) || RegRead(1,128) || RegRead(0,128)
StoreMemory(ExceptionBase,ExceptionBase+Thread*128,512,L,u)
RegWrite(0,64,ProgramCountergs. 2 || PrivilegeLevel
RegWrite(1,64,ExceptionBase+Thread*128)
RegWrite(2,64,exception)
RegWrite(3,64,FailingAddress)

endif

PrivilegeLevel « t1_g

ProgramCounter « tg3_2 || 02
case exception of
AccessDetailRequiredByTag,
AccessDetailRequiredByGlobalTB,
AccessDetailRequiredBylLocalT8:
ContinuationState « ContinuationState + 1
others:
/* nothing */
endcase
ExceptionState « ExceptionState + 1
enddef

FIG. 40B

U.S. Patent Jan. 5,2016 Sheet 256 of 509 US 9,229,713 B2

Definition

def Instruction(inst) as
major « inst31_24
rd « inst23 18
1c «inst17 12
simm « rb «—inst11_¢6
minor « ra <« insts_g
case major of
ARES:
AlwaysReserved
AMINOR:
minor « insls g
case minor of
A.ADD, A.ADD.O, A.ADD.OU, A.AND, A.ANDN, A.NAND, A.NOR,
A.OR, A.ORN, AXNOR, A.XOR:
Address(minor,rd,rc,rb)
A.COM:
compare « insty1.6
case compare of
A.COM.E, A.COMNE, A.COM.AND.E, A.COM.AND.NE,
A.COM.L, A.COM.GE, A.COM.L.U, A.COM.GE.U;
AddressCompare(compare,rd,rc)
others:
raise Reservedinstruction
endcase
A.SUB, A.SUB.O, A.SUB.U.O:
AddressReversed(minor,rd,rc,rb)
A.SET.AND.E, A.SET.AND.NE, A.SET.E, A.SET.NE,
ASET.L, ASET.GE, A.SET.L.U, A.SET.GE.U::
AddressSet(minar,size,ra,rb,rc)
ASET.E.F.16, ASET.LG.F.16, ASET.GE.F.16, ASET.L.F.16,
ASET.E.F.32, A.SET.LG.F.32, ASET.GE.F.32, ASET.L.F.32,
ASET.EF.64, ASET.LG.F.64, ASET.GE.F.64, ASET.L.F.64:
AddressSetFloatingPoint(minor.op,.size,
minor.round, rd, rc, rb)
ASHL.1LADD. A SHL.1.ADD+3:
AddressShiftL eftimmediateAdd(instq_g,rd,rc,rb)
A.SHL.I.SUB..A.SHL.|.SUB+3:
AddressShiftLeftimmediateSubtract(insty_g,rd,rc,rb)
ASHL.I, ASHL.I.O, A.SHL.L.U.O, A.SHR.I, A.SHR.L.U, AROTR.I:
AddressShiftimmediate(minor,rd,rc,simm}
others:
raise ReservedInstruction
endcase
A.COPY.I

FIG. 40C-1

U.S. Patent Jan. 5,2016 Sheet 257 of 509 US 9,229,713 B2

AddressCopylmmediate(maijor,rd,inst17_0)
A.ADD.I, A ADD.1.O, A.ADD.I.U.O, AAND.I, A.OR.I, ANAND.I, ANOR.I, A XOR.I:
Addressimmediate(major,rd,rc,insty1_q)
A.SUB.|, A.SUB.1L.O, A.SUB.1.U.O:
AddressimmediateReversed(major,rd,rc,inst11_g)
A.SET.AND.E.I, ASET.AND.NE.I, A SET.E.|, AASET.NE.I,
A.SET.L.i, E.SET.GE.l, A.SET.LU.l, ASET.GE.U.I:
AddressimmediateSet(major,rd,rc,inst11. o)
A MUX:
AddressTernary(major,rd,rc,rb,ra)
B.MINOR:
case minor of
B:
Branch(rd,rc,rb)
B.BACK:
BranchBack(rd,rc,rb)
B.BARRIER:
BranchBarrier{rd,rc,rb)
B.DOWN:
BranchDown(rd,rc,rb)
B.GATE:
BranchGateway(rd,rc,rb)
B.HALT:
BranchHalt(rd,rc,rb)
B.HINT:
BranchHint(rd,inst17_12,simm)
B.LINK:
BranchLink(rd,rc,rb)
others:
raise Reservedinstruction
endcase
BE, BNE, BL, BGE, BLU, BGE.U, BAND.E, BAND.NE:
BranchConditional(major,rd,rc,insty4_.0)
BHINTI:
BranchHintimmediate(instp3_1g.inst17_12.,inst11_0)
Bl:
Branchimmediate(instoz o)
BLINKI:
BranchimmediateLink(inst23_g)
BEF16, BLGF16, BLF16, BGEF 16,
BEF32, BLGF32, BLF32, BGEF32,
BEF64, BLGF64, BLF64, BGEF64,
BEF128, BLGF 128, BLF128, BGEF128:
BranchConditionalFioatingPoint(major,rd,rc.inst1¢_g)
BIF32, BNIF32, BNVF32, BVF32:
BranchConditionalVisibilityFloatingPoint{major,rd,rc,inst11. g)
L.MINOR
case minor and 31 of
L16L, LU16L, L32L, LU32L, L64L, LU6G4L, L128L, L8, LUS,
L16AL, LU1BAL, L32AL, LU32AL, L64AL, LUB4AL, L128AL,

FIG. 40C-2

U.S. Patent Jan. 5,2016 Sheet 258 of 509 US 9,229,713 B2

L16B, LU16B, L32B, LU32B, L64B, LU64B, L1288,
L16AB, LU16AB, L32AB, LU32AB, L64AB, LUG4AB, L128AB:
Load({minar,rd,rc,rb,insts)
others:
raise Reservedinstruction
endcase
LI16L Liu16L, LI32L, LIU32L, Li64L, Liue4L, L1128L, LIS, LIUS,
LIM6AL, LIU16AL, LI32AL, LIU32AL, LIG4AL, LIUG4AL, LI1128AL,
LI16B, LIU16B, L1328, LIU32B, L1648, LIU64B, L1128B,
LI16AB, LIU16AB, LI32AB, LIU32AB, LI6G4AB, LIUG4AB, LI128AB:
Loadlmmediate(major,rd,rc,insty1_g)
S.MINOR
case minor and 31 of
S16L, S32L, S64L, S128L, S8,
S16AL, S32AL, S64AL, S128AL,
SAS64AL, SCS64AL, SMS64AL, SME4AL,
$16B, $328B, S64B, $128B,
S16AB, S32AB, S64AB, S128AB,
SAS64AB, SCS64AB, SMS64AB, SM64AB:
Store(minor,rd,rc,rb,insts)
SDCS64AB, SDCS64AL:
if insts then
raise Reservedinstruction
endif
StoreDoubleCompareSwap{minor,rd,rc,rb)
others:
raise Reservedinstruction
endcase
SI16L, SI32L, SI64L, Si128L, SIS,
SI16AL, SI32AL, SIG4AL, SI128AL,
SASIB4AL, SCSIG4AL, SMSIG4AL, SMUXIG4AL,
SI168B, S132B, Si64B, S11288B,
SI16AB, SI32AB, SI64AB, SI1128AB
SASIB4AB, SCSI64AB, SMSIB4AB, SMUXIG4AB:
Storelmmediate(major,rd,rc,inst1_p)
G.8, G.16, G.32, G.64, G.128:
minor « insts_g

size 0] 1| o3+major-G.8
case minor of
G.ADD, G.ADD.L, G.ADD.LU, G.ADD.O, G.ADD.OU:

Group(minor,size,rd,rc,rb)

G.ADDHC, G.ADDHF, G.ADDHN, G.ADDHZ,
G.ADDHUC, G.ADDHUF, G.ADDHUN, G.ADDHUZ:

GroupAddHalve(minor,instq_g,size,rd,rc,rb)
G.AAA, G.ASA:

Grouplnplace(minor,size,rd,rc,rb)
G.SET.AND.E, G.SET.AND.NE, G.SET.E, G.SET.NE,
G.SET.L, G.SET.GE, G.SET.L.U, G.SET.GE.U:
G.SUB, G.SUB.L, G.SUB.LU, G.SUB.O, G.SUB.U.O:

GroupReversed(minor,size,ra,rb,rc)
G.SET.E.F, G.SET.LG.F, G.SET.GE.F, G.SET.L.F,

FIG. 40C-3

U.S. Patent Jan. 5,2016 Sheet 259 of 509 US 9,229,713 B2

G.SET.E.F.X, G.SET.LG.F.X, G.SET.GE.F.X, G.SET.L.F.X
GroupReversedFloatingPoint(minor.op, .size,
minor.round, rd, rc, rb)
G.SHL.ILADD..G.SHL.I.LADD+3,
GroupShiftLeftimmediateAdd(inst g.size,rd,rc,rb)
G.SHL.1.SUB..G.SHL.1.SUB+3,
GroupShiftLeftimmediateSubtract(insty_g.size,rd,rc,rb)
G.SUBHC, G.SUBHF, G.SUBHN, G.SUBHZ,
G.SUBHUC, G.SUBHUF, G.SUBHUN, G.SUBHUZ:
GroupSubtractHalve(minor,instq_g,size,rd,rc,rb)
G.COM,
compare « inst11, ¢
case compare of
G.COM.E, G.COM.NE, G.COM.AND:E, G.COM.AND.NE,
G.COM.L, G.COM.GE, G.COM.L.U, G.COM.GE.U:
GroupCompare(compare,size,ra,rb)
others:
raise Reservedinstruction
endcase
others:
raise Reservedlnstruction
endcase
G.BOOLEAN..G.BOOLEAN+1:
GroupBoolean(major,rd,rc,rb,minor)
G.COPY.....G.COPY.I+1:
size « 0} 1 |} 04+inst7.16
GroupCopylmmediate(major,size,rd,inst15_g)
G.AND.|, G.NAND.I, G.NOR.|, G.OR.l, G.XORL.I,
G.ADD.I, G.ADD.I.O, G.ADD.L.U.O:
size « 0 || 1] 04+inst11.10
Groupimmediate(major,size,rd,rc,instg o)
G.SET.AND.E.l, G.SET.AND.NE.|l, G.SET.E.l, G.SET.GE.l, G.SET.L.|,
G.SET.NE.|, G.SET.GE.L.U, G.SET.L.IL.U, G.SUB.I, G.SUB.L.O, G.SUB.LU.O:
size « 0 || 1] 04*insti1.10
GrouplmmediateReversed(major,size,rd,rc,instg_ o)
G.MUX:
GroupTernary(major,rd,rc,rb,ra)
X.SHIFT:
minor « instg_2 || 02

size « 0 || 1 |} O(instaq [l insty_o)
case minor of
X.EXPAND, X.UEXPAND, X.SHL, X.SHL.O, X.SHL.U.O,
X.ROTR, X.SHR, X.SHR.U,
Crossbar(minor,size,rd,rc,rb)
X.SHL.M, X.SHR.M:
Crossbarinplace(minor,size,rd,rc,rb)
others:
raise Reservedlnstruction
endcase

FIG. 40C-4

U.S. Patent Jan. 5,2016 Sheet 260 of 509 US 9,229,713 B2

X.EXTRACT:
CrossbarExtract(major,rd,rc,rb,ra)
X.DEPOSIT, X.DEPOSIT.U X.WITHDRAW X.WITHDRAW.U
CrossbarField{major,rd,rc.insty4_g.insts_g)
X.DEPOSIT.M:
CrossbarFieldInplace(major,rd,rc,inst1_g,insts, o)
X.SHIFT.E
minor « insts_g

case minors_2 || 02 of
X.COMPRESS.I, X.EXPAND.I, X.ROTR.}, X.SHL.I, X.SHL.1.0, X.SHL.L.U.Q,
X.SHR.I, X.COMPRESS.I.U, X.EXPAND.LU, X.SHR.UL:
CrossbarShortimmediate(minor,rd,rc,simmy)
X.SHL.M.I, X.SHR.M.I:
CrossbarShortimmediatelnplace(minor,rd,rc,simm)
others:
raise ReservedInstruction
endcase
X.SHUFFLE..X.SHUFFLE+1:
CrossbarShuffle(major,rd,rc,rb,simm)
X.SWIZZLE. X.SWIZZLE+3:
CrossbarSwizzle(major,rd,rc, instq1_g,insts_g)
X.SELECT.8, XTRANSPOSE:
CrossbarTemary(major,rd,rc,rb,ra)
E.8, E.16, E.32, E.64, E.128:
minor « insts o

size « 0] 1]] o3+major-E.8
case minor of

E.CON., E.CON.U, E.CON.M, E.CON.C,

E.MUL,, E.MUL.U, EMULM, EMUL.C,

E.MUL.SUM, E.MUL.SUM.U, E.MUL.SUM.M, E.MUL.SUM.C,

E.DIV, E.DIV.U, E.MUL.P:
Ensemble(minor,size,ra,rb,rc)

E.CON.F, E.CON.C.F:
EnsembleConvolveFloatingPoint(minor.size,rd,rc,rb)

E.ADD.F.N, EMUL.C.F.N, EMUL.F.N, E.DIV.F.N,

E.ADD.F.Z, EMUL.C.F.Z, EMULF.Z E.DIV.F.Z,

E.ADD.F.F, E.MUL.C.F.F, EMUL.F.F, E.DIV.F.F,

E.ADD.F.C, EMUL.C.F.C, EMUL.F.C, EDIV.F.C,

E.ADD.F, EXMUL.C.F, EMUL.F, E.DIV.F,

E.ADD.F.X, E.MUL.C.F.X, EMUL.F.X, EDIV.F.X,

E.MUL.SUM.F, EMUL.SUM.C.F:
EnsembleFloatingPoint(minor.op, size, minor.round, rd, rc, rb}

E.MUL.ADD, E.MUL.ADD.U, E.MUL.ADD.M, E.MUL.ADD.C:
Ensemblelnplace(minor,size,rd,rc,rb)

E.CON.F, E.CON.C.F,

E.MUL.ADD.F, EMUL.ADD.C.F

E.MULSUB.F, E.MULSUB.C.F:
EnsemblelnplaceFloatingPoint(major,size,rd,rc,rb,ra)

E.MUL.SUB, E.MUL.SUB.U, E.MUL.SUB.M, E.MUL.SUB.C:
EnsembleinplaceReversed(minor,size,rd,rc,rb)

FIG. 40C-5

U.S. Patent Jan. 5,2016 Sheet 261 of 509 US 9,229,713 B2

E.SUB.F.N, E.SUB.F.Z, E.SUB.F.F, ESUB.F.C, E.SUB.F, E.SUB.F.X:
EnsembleReversedFloatingPoint(minor.op, major.size,
minor.round, rd, rc, rb)
E.UNARY:
case unary of
E.SUM, E.SUMU, E.LOG.MOST, E. LOG.MOST.U,
E.SUM.C, E.SUM.P:
EnsembleUnary(unary,rd,rc)
E.ABS.F, E.ABS.F.X, E.COPY.F, E.COPY.F.X,
E.DEFLATE.F, E.DEFLATE.F.N, E.DEFLATE.F.Z,
E.DEFLATE.F.F, E.DEFLATE.F.C, E.DEFLATE.F.X:
E.FLOAT.F, E.FLOAT.F.N, E.FLOAT.F.Z,
E.FLOAT.F.F, E.FLOAT.F.C, E.FLOAT.F.X:
E.INFLATE.F, E.INFLATE.F.X, E.NEG.F, E.NEG.F.X,
E.RECEST.F, E.RECEST.F.X, E.RSQREST.F, E.RSQREST.F.X,
E.SQR.F, E.SQR.F.N, E.SQR.F.Z, E.SQR.F.F, E.SQR.F.C, E.SQR.F.X:
E.SUM.F, E.SUM.F.N, E.SUM.F.Z,
E.SUM.F.F, E.SUM.F.C, E.SUM.F.X:
E.SUM.CF,
E.SINK.F, E.SINK.F.Z.D, E.SINK.F.F.D, E.SINK.F.C.D, E.SINK.F.X.D,
E.SINK.F.N, E.SINK.F.Z, E.SINK.F.F, E.SINK.F.C, E.SINK.F.X;
EnsembleUnaryFloatingPoint{unary.op, size,
unary.round, rd, rc)
others:
raise Reservedinstruction
endcase
others:
raise ReservedInstruction
endcase .
E.MUL.X, E.EXTRACT, E.SCAL.ADD.X:
EnsembleExtract(major,rd,rc,rb,ra)
E.CON.X, EMUL.ADD.X:
EnsembleExtractinplace(major,rd,rc,rb,ra)
E.EXTRACT.l, EMUL.X.I:
size « 1|| 03+insts 3
type « insts
EnsembleExtractimmediate(major,type,size rd,rc,rb,insty_g)
E.CON.X.I, EEMUL.ADD.X.I:
size « 1| 03*insts 3
type « insts
EnsembleExtractimmediatelnplace(major,type,size rd,rc,rb,insty_g)
E.MUL.G.8, E.MUL.SUM.G.8:
size « 8
EnsembleTemary(major,size,rd,rc,rb,ra)
E.SCAL.ADD.F16, E.SCAL.ADD.F32, E.SCAL ADD.F64:
EnsembleTernaryFloatingPoint(major,prec,rd,rc,rb,ra)
W.MINOR.B, W.MINOR.L:
case minor of
W.TRANSLATE.8, W.TRANSLATE.16, W.TRANSLATE.32, W.TRANSLATE.64:
size « 1 || 03*insts.4

FIG. 40C-6

U.S. Patent Jan. 5,2016 Sheet 262 of 509 US 9,229,713 B2

WideTranslate(major,size,rd,rc,rb)
W.MUL.MAT.8, W.MUL.MAT. 16, W.MUL.MAT .32,
W.MUL.MAT.U.8, W.MUL.MAT.LL.16, W.MUL MAT.U.32,
W.MUL.MAT.M.8, W.MUL.MAT.M.16, W.MUL.MAT.M.32,
W.MUL.MAT.C.8, W.MUL . MAT.C.186,
W.MUL.MAT.P.8, W.MUL.MAT.P.16, W.MUL . MAT.P.32:
size « 1 {j 03+nsts 4
WideMultiplyMatrix{major,minor,size,rd,rc,rb)
W.MUL.MAT.F16, W.MUL.MAT.F.32, W.MUL MAT .F64,
W.MUL.MAT.C.F16, W.MUL.MAT.C.F32:
size « 1|} 03+insts 4
WideMultiplyMatrixFloatingPoint(major,minor,size,rd,rc,rb)
others:
raise Reserved|nstruction
endcase
W.MUL.MAT.X.B, W.MUL.MAT.X.L:
WideMultiplyMatrixExtract(major,ra,rb,rc,rd)
W.MUL.MAT.X.L.B, WMUL.MAT X.L.L, W.MUL.MAT X.I.C.B, W.MULMAT.X.I.C.L:
size « 1] 03+insla_3
type < insts
WideMultiplyMatrixExtractimmediate(major,type,size ra,rb,rc,insta2_g)
W.MUL.MAT.G.8.B, WMUL.MAT.G.8.L:
size « 8
WideMultiplyMatrixGalois(major,size,rd rc,rb,ra)
W.SWITCH.B, W.SWITCH.L:
WideSwitch(major,rd,rc,rb,ra)
others:
raise Reservedinstruction

endcase

enddef

FIG. 40C-7

U.S. Patent Jan. 5,2016 Sheet 263 of 509

Operation code

US 9,229,713 B2

[ARES | Always reserved i
Format
A.RES imm
ares(imm)
31 2423 0
[ARES] imm |
8 24

FIG. 41A

U.S. Patent Jan. 5,2016 Sheet 264 of 509 US 9,229,713 B2

Definition
def AlwaysReserved as

raise Reservedinstruction
enddef

FIG. 41B

U.S. Patent Jan. 5,2016 Sheet 265 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

FIG. 41C

U.S. Patent

FIG. 42A

Jan. 5, 2016 Sheet 266 of 509 US 9,229,713 B2
Operation codes
A.ADD Address add
A.ADD.O Address add signed check overflow
A.ADD.U.O Address add unsigned check overflow
A.AND Address and
A.ANDN Address and not
ANAND Address not and
A.NOR Address not or
A.OR Address or
A.ORN Address or not
A.XNOR Address exclusive nor
A XOR Address xor
Redundancies
A.OR rd=rc,rc < A.COPY rd=rc
A.AND rd=rc,rc < A.COPY rd=rc
A.NAND rd=rc,rc < ANOT rd=rc
A.NOR rd=rc,rc < ANOT rd=rc
A.XNOR rd=rc,rc < ASETrd
A.XOR rd=rc,rc o AZEROrd
A.ADD rd=rc,rc < A.SHL.I rd=rc,1
A.ADD.O rd=rc,rc < ASHL.LO rd=rc,1
A.ADD.U.O rd=rc,rc < A.SHL.I.U.O rd=rc,1
Selection
class operation check
arithmetic ADD NONE O u.0o
bitwise OR AND XOR ANDN
NOR NAND XNOR ORN
Format
rd=rc,rb
rd=op(rc,rb)
31 24 23 18 17 12 11 65 0
| AMINOR | rd | rc I b I op |
8 6 6 6 6

U.S. Patent Jan. 5,2016 Sheet 267 of 509

Definition

def AddressCompare(op,rd,rc) as
d < RegRead(rd, 128)
¢ «— RegRead(rc, 128)
case op of
A.COM.E:
z«d=c¢
A.COM.NE:
Zed=c
A.COM.AND.E:
ze«(dandc)=0
A.COM.AND.NE:
Ze«(dandc)=z0
A.COM.L:
Z«(rd=rc}?(c<0):(d<c)
A.COM.GE:
Ze(d=rc)?(c20):(d2c)
A.COM.L.U:
Z(d=rc)?(c>0):((01d)<(0]lc)
A.COM.GE.U:
Z+— (d=rc)?(c<0): ((0}|d)=(0] c)}
endcase
if zthen
raise FixedPointArithmetic
endif
enddef

FIG. 42B

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 268 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 42C

U.S. Patent

Jan. 5, 2016

Sheet 269 of 509

Operation codes

US 9,229,713 B2

A.COM.AND.E Address compare and equal zero
A.COM.AND.NE Address compare and not equal zero
A.COM.E Address compare equal
A.COM.GE Address compare greater equal signed
A.COM.GE.U Address compare greater equal unsigned
A.COM.L Address compare less signed
A.COM.L.U Address compare less unsigned
A.COM.NE Address compare not equal
Equivalencies
A.COM.E.Z Address compare equal zero
A.COM.G.Z Address compare greater zero signed
A.COM.GE.Z Address compare greater equal zero signed
A.COM.L.Z Address compare less zero signed
A.COM.LE.Z Address compare less equal zero signed
A.COM.NE.Z Address compare not equal zero
A.COM.G Address compare greater signed
A.COM.G.U Address compare greater unsigned
A.COM.LE Address compare less equal signed
A.COM.LE.U Address compare less equal unsigned
A.FIX Address fixed point arithmetic exception
A.NOP Address no operation
A.COME.Zrc <« A.COM.AND.E rc,rc
ACOM.G.Zrc < A.COM.L.Urcrc
A.COM.GEZrc « A.COM.GE rc,rc
ACOML.Zrc < A.COM.Lrc,rc
A.COM.LE.Z rc < A.COM.GE.Urc,rc
A.COM.NE.Z rc « A.COM.AND.NE rc,rc
A.COM.G re,rd — A.COM.L rd,rc
ACOM.G.Urc,rd - ACOM.L.Urdsc
A.COM.LE rc,rd — A.COM.GE rd,rc
A.COM.LE.U rc,rd — A.COM.GE.U rd,rc
A.FIX « ACOMEDO,0
A.NOP « A.COM.NE 0,0

FIG. 43A-1

U.S. Patent Jan. 5,2016 Sheet 270 of 509 US 9,229,713 B2

Redundancies

A.COM.E rd,rd < AFIX
A.COM.NE rd,rd < ANOP
Selection
class operation cond operand
boolean COM.AND COM E NE
arithmetic COM LGE GLE None U
COM LGEGLEENE Z
Format

A.COM.op rd,src

acomop(rd,rc)
acomopz(rcd)

31 24 23 18 17 12 11 6 5 0

| AMINOR | rd | rc | op | ACOM |
8 6 6 6 6

FIG. 43A-2

U.S. Patent Jan. 5,2016 Sheet 271 of 509

Definition

def AddressCompare(op,rd,rc) as
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
case op of
A.COM.E:
zed=c¢
A.COM.NE:
zed=cC
A.COM.AND.E:
2z« (dandc)=0
A.COM.AND.NE:
z«(dandc)=0
A.COM.L:
Z2e(rd=rc)?(c<0):(d<c)
A.COM.GE:
Ze(rd=rc)?{(c20):(d2¢c)
A.COM.L.U:
Ze(rd=rc)?(c>0):((0Hd)<(0]lc))
A.COM.GE.U:
Ze—(rd=rc)?(c<0):((0]}d)=(0 || c))
endcase
if zthen
raise FixedPointArithmetic
endif
enddef

FIG. 43B

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 272 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 43C

U.S. Patent

Jan. 5, 2016

Operation codes

Sheet 273 of 509

US 9,229,713 B2

A.COM.E.F.016 Address compare equal floating-point half
A.COM.E.F.032 Address compare equal floating-point single
A.COM.E.F.064 Address compare equal floating-point double

A.COM.LG.F.016

Address compare less greater floating-point half

A.COM.LG.F.032

Address compare less greater floating-point single

A.COM.LG.F.064

Address compare less greater floating-point double

A.COM.L.F.016 Address compare less floating-point half
A.COM.L.F.032 Address compare less floating-point single
A.COM.L.F.064 Address compare less floating-point double

A.COM.GE.F.016

Address compare greater equal floating-point half

A.COM.GE.F.032

Address compare greater equal floating-point singie

A.COM.GE.F.064 Address compare greater equal floating-point double
Equivalencies

A.COM.G.F.016 Address compare greater floating-point half

A.COM.G.F.032 Address compare greater floating-point single

A.COM.G.F.064 Address compare greater floating-point double

A.COM.LE.F.016

Address compare less equal floating-point half

A.COM.LE.F.032

Address compare less equal floating-point single

A.COM.LE.F.064

Address compare less equal floating-point double

A.COM.G.F.prec rd=rb,rc

— A.COM.L.F.prec rd=rc,rb

A.COM.LE.F.prec rd=rb,rc

— A.COM.GE.F.prec rd=rc,rb

Selection
class op prec round/trap
set SET. 16 32 64 NONE
E LG
L GE
G LE

FIG. 44A-1

U.S. Patent Jan. 5,2016 Sheet 274 of 509 US 9,229,713 B2

Format

A.COM.op.prec rd,rc

" acomopprec (rd,rc)

31 24 23 18 17 12 11 6 5 0
| AMINOR | rd i rc | opprec | A.com |
8 6 6 6 6

FIG. 44A-2

U.S. Patent Jan. 5,2016 Sheet 275 of 509 US 9,229,713 B2

Definition

def AddressCompareFloatingPoint(op,prec,rd,rc) as
d « F(prec,RegRead(rd, 64)prec-1..0),
¢ « F(prec,RegRead(rc, 64)prec-1..0),
v « fcom(d, c)

case op of
A.COM.L.F:
z«v=L
A.COM.GE.F:
z <« v=Gorv=E
A.COM.E.F:
z« v=E
A.COM.LG.F:
z «v=Lorv=G
endcase
if z then
raise FloatingPointArithmetic
endif
enddef

FIG. 44B

U.S. Patent Jan. 5,2016 Sheet 276 of 509 US 9,229,713 B2

Exceptions

Floating-point arithmetic

FIG. 44C

U.S. Patent Jan. 5,2016 Sheet 277 of 509 US 9,229,713 B2

Operation codes

[A.COPY.I | Address copy immediate |

Equivalencies

A.SET Address set

A.ZERO Address zero

ASETrd « A.COPY.|rd=-1

AZERO rd «— A.COPY.Ird=0
Format

A.COPY.I rd=imm

rd=acopyi(imm)
31 24 23 18 17 0
| A.copy.l | rd | imm |
8 6 18

FIG. 45A

U.S. Patent Jan. 5,2016 Sheet 278 of 509 US 9,229,713 B2

Definition

def AddressCopylmmediate(op,rd,imm) as
z « (imm]39 || imm)
RegWrite(rd, 128, z)

enddef

FIG. 45B

U.S. Patent Jan. 5,2016 Sheet 279 of 509 US 9,229,713 B2

Exceptions

none

FIG. 45C

U.S. Patent

Operation codes

Jan. 5, 2016

Sheet 280 of 509

US 9,229,713 B2

A.ADD.| Address add immediate

A.ADD.I.O Address add immediate signed check overflow

A.ADD.L.U.O Address add immediate unsigned check overflow

A.AND.I Address and immediate

A.NAND.| Address not and immediate

A.NOR.I Address not or immediate

A.OR.| Address or immediate

AXOR.! Address xor immediate
Equivalencies

A.ANDN.I Address and not immediate

A.COPY Address copy

A.NOT Address not

A.ORN.I Address or not immediate

A XNOR.I Address xnor immediate

A.ANDN.I rd=rc.imm — A.AND.I rd=r¢c,~imm

A.COPY rd=rc «~ A.OR.lIrd=rc,0

A.NOT rd=rc < A.NOR.I rd=rc,0

A.ORN.I rd=rc.imm — A.OR.l rd=rc,~imm

A.XNOR.! rd=rc.imm — AXOR.l rd=r¢,~imm
Redundancies

A.ADD.I rd=rc,0 < A.COPY rd=rc

A.ADD.L.O rd=rc,0 < A.COPY rd=rc

A.ADD.1.U.O rd=rc,0 &~ A.COPY rd=rc

A.AND.I rd=rc,0 o AZEROrd

A.AND.I rd=rc,-1 < A.COPY rd=rc

A.NAND.I rd=rc,0 o ASETrd

A.NAND.I rd=rc,-1 < ANOT rd=rc

A.OR.I rd=rc,-1 "o ASETrd

A.NOR.I rd=r¢,-1 o AZEROrd

A.XOR.I rd=rc,0 < A.COPY rd=rc

A.XOR.I rd=rc,-1 < A.NOT rd=rc

FIG. 46A-1

U.S. Patent Jan. 5,2016 Sheet 281 of 509 US 9,229,713 B2

Selection
class operation check
arithmetic ADD , NONEO Uo
bitwise AND OR NANDNOR
XOR
Format
op rd=rc,imm
rd=op(rc,imm)
31 24 23 18 17 12 11 0
| op | rd | rc | imm]
8 6 6 12

FIG. 46A-2

U.S. Patent Jan. 5,2016 Sheet 282 of 509

Definition

def Addressimmediate(op,rd,rc,imm) as
i < imm3% || imm
¢ « RegRead(rc, 64)
case op of
A.AND.I;
Z«—candi
A.OR.I:
ZeCOri
A.NAND.I:
Zecnandi
A.NOR.I:
Z«cnori
AXOR.I:
Ze«CXori
A.ADD.I:
ZeCH+i
A.ADD.LO:)
t<(ce3llc)+(is3lli)
if tg4 # tg3 then
raise FixedPointArithmetic
endif
zZ«163.0
A.ADD.1L.U.O:
t«(ce3llc)+ (is3lli)
if tg4 = O then
raise FixedPointArithmetic
endif
Z < 163.0
endcase
RegWrite(rd, 64, z)
enddef

FIG. 46B

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 283 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 46C

U.S. Patent Jan. 5,2016 Sheet 284 of 509 US 9,229,713 B2

Operation codes

A.SUB.I Address subtract immediate
A.SUB.I.O Address subtract immediate signed check overflow
A.SUB.I.U.O Address subtract immediate unsigned check overflow
Equivalencies
A.NEG Address negate
A.NEG.O Address negate signed check overflow
A.NEG rd=rc — A.SUB.Ird=0,rc
A.NEG.O rd=rc — A.SUB.1.O rd=0,rc
Redundancies
[A.SUB.I rd=-1,rc < A.NOT rd=rc |
Selection
class operation form type check
arithmetic | SUB |
NONEU 0
Format
op rd=imm,rc
rd=op(imm,rc)
31 24 23 18 17 12 11 0
Il op | rd | rc | imm |
8 6 6 12

FIG. 47A

U.S. Patent Jan. 5,2016 Sheet 285 of 509

Definition

def Addressimmediate(op,rd,rc,imm) as
i < imm3% || imm
¢ « RegRead(rc, 64)
case op of
A.SUB.I:
Z+i-¢C
A.SUB..O:
t<« (ig3 1l i)- (ce3 |l ©)
if tg4 = tg3 then
raise FixedPointArithmetic
endif
z<+163.0
A.SUB.LU.O:
t«(is3|li)-(ce3ll c)
if tgq = 0 then
raise FixedPointArithmetic
endif
z+<1t63.0
endcase
RegWrite(rd, 64, z)
enddef

FIG. 47B

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 286 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 47C

U.S. Patent

Jan. 5,

2016 Sheet 287 of 509

Operation codes

A.SET.AND.E.I Address set and equal immediate

A.SET.AND.NE.I Address set and not equal immediate

A.SET.E.l Address set equal immediate

A.SET.GE.I Address set greater equal immediate signed

ASET.L.| Address set less immediate signed

A.SET.NE.| Address set not equal immediate

ASET.GE.LU Address set greater equal immediate unsigned

ASET.L.ILU Address set less immediate unsigned
Equivalencies

A.SET.G.LU Address set greater immediate unsigned

A.SET.LE.I Address set less equal immediate signed

ASET.LELU Address set less equal immediate unsigned

A.SET.G.| rd=imm,rc

— A.SET.GE.l rd=imm+1,rc
A.SET.G.1.U rd=imm,rc — ASET.GE.LU rd=imm+1,rc
A.SET.LE.I rd=imm,rc — A.SET.L.I rd=imm-1,rc
A.SET.LE.I.U rd=imm,rc — A.SET.L.LU rd=imm-1,rc

Redundancies

A.SET.AND.E.| rd=rc,0 < ASETd
A.SET.AND.NE.| rd=rc,0 o AZEROrd
A.SET.AND.E.I rd=rc,-1 < ASETE.Zrd=rc
A.SET.AND.NE.I rd=rc,-1 < A.SET.NE.Z rd=rc
A.SET.E.I rd=rc,0 < ASET.E.Z rd=rc
A.SET.GE.l rd=rc,0 < A.SET.GE.Z rd=rc
A.SET.L.trd=rc,0 < ASET.L.Zrd=rc
A.SET.NE.l rd=rc,0 < A.SET.NE.Z rd=rc
A.SET.GE.IL.U rd=rc,0 & ASET.GE.U.Z rd=rc
A.SET.L.LU rd=rc,0 < ASET.L.U.Zrd=rc

FiG. 48A-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 288 of 509 US 9,229,713 B2

Selection
class operation cond form type check
bociean |SET.AND E NE !
SET
SET LGEGLE || NONEU
Format
op rd=imm,rc
rd=op(imm,rc)
31 24 23 18 17 12 11 0
{ op | rd | rc] imm |
8 6 6 12

FIG. 48A-2

U.S. Patent Jan. 5,2016 Sheet 289 of 509 US 9,229,713 B2

Definition

def Addresslmmediate(op,rd,rc,imm) as
i « imm118 |f imm
¢ « RegRead(rc, 128)
case op of
A.SET.AND.E.I:
z « ({iand c) = 0)84
A.SET.AND.NE.I:
z « ((iand c) = 0)84
ASETE.:
2« (i=c)4
ASET.NE.I:
Z <« (i=c)B4
ASET.L.E
2« (i<c)f4
ASET.GE.I:
z « (i2c)b4
ASET.L.LU:
z((0])< (0]l)B4
ASET.GE.lLU:
ze (0112 (] c)f
endcase
RegWrite(rd, 64, z)
enddef

FIG. 488

U.S. Patent Jan. 5,2016 Sheet 290 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 48C

U.S. Patent Jan. 5,2016 Sheet 291 of 509 US 9,229,713 B2

Operation codes

A.SUB Address subtract
A.SUB.O Address subtract signed check overflow
A.SUB.U.O Address subtract unsigned check overflow
Selection
class operation operand check
arithmetic SuUB
None U 0
Format
op rd=rb,rc

rd=op(rb,rc)

31 24 23 18 17 12 11 6 5 0
| AMINOR | rd | rc | rb | op |
8 6 6 6 6

FIG. 45A

U.S. Patent Jan. 5,2016 Sheet 292 of 509

Definition

def AddressReversed(op,rd,rc,rb) as
¢ < RegRead(rc, 64)
b « RegRead(rb, 64)
case op of
A.SUB:
z«b-c
A.SUB.O:
t« (b3 || b) - (ca3 Il €)
if tg4 # t3 then
raise FixedPointArithmetic
endif
Z+1t63.0
A.SUB.U.O:
te (01} b)- (0] c)
if tg4 = 0 then
raise FixedPointArithmetic
endif
Z¢<1§3.0
endcase
RegWrite(rd, 64, z)
enddef

FIG. 49B

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 293 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 43C

U.S. Patent

Jan. 5, 2016

Sheet 294 of 509

Operation codes

US 9,229,713 B2

A.SET.AND.E Address set and equal zero
A.SET.AND.NE Address set and not equal zero
ASET.E Address set equal
A.SET.GE Address set greater equal signed
A.SET.GE.U Address set greater equal unsigned
A.SET.L Address set less signed
A.SET.L.U Address set less unsigned
A.SET.NE Address set not equal
Equivalencies
A.SET.E.Z Address set equal zero
ASET.G.Z Address set greater zero signed
A.SET.GE.Z Address set greater equal zero signed
ASET.L.Z Address set less zero signed
ASET.LEZ Address set less equal zero signed
A.SET.NE.Z Address set not equal zero
A.SET.G Address set greater signed
A.SET.G.U Address set greater unsigned
A.SET.LE Address set less equal signed
A.SET.LE.U Address set less equal unsigned

A.SET.E.Z rd=rc

A.SET.AND.E rd=rc,rc

A.SET.G.Z rd=rc

A.SET.L.U rd=rc,rc

A.SET.GE.Z rd=rc

A.SET.GE rd=rc,rc

A.SET.L.Z rd=rc

A.SET.L rd=rc,rc

A.SET.LE.Z rd=rc

A.SET.GE.U rd=rc,rc

A.SET.NE.Z rd=rc

A.SET.AND.NE rd=rc,rc

A.SET.G rd=rb,rc

A.SET.L rd=rc,/b

A.SET.G.U rd=rb,rc

A.SET.L.U rd=rc,rb

A.SET.LE rd=rb,rc

A.SET.GE rd=rc,ib

A.SET.LE.U rd=rb,rc

JWH T (e T

A.SET.GE.U rd=rc,rb

FIG. 50A-1

U.S. Patent Jan. 5,2016 Sheet 295 of 509 US 9,229,713 B2
Redundancies
A.SET.E rd=rc,rc < ASETrd
A_SET.NE rd=rc,rc < AZEROrd
Selection
class operation cond operand check
boolean SET.AND E NE
SET
SET LGEGLE NoNE U
SET LGEGLEENE Z
Format
op rd=rb,rc
rd=op(rb,rc)
rd=opz(rcb)
31 24 23 18 17 12 11 5
| AMINOR | rd l re | b op
8 6 6 6 6

rc «—rb<«rcbh

FIG. 50A-2

U.S. Patent Jan. 5,2016 Sheet 296 of 509

Address Set: pseudo code

Definition

def AddressSet(op,rd,rc,rb) as
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
case op of
ASET.E:
z« (b=c)f4
A.SET.NE:
z« (b=c)f4
A.SET.AND.E:
z « ((b and c) = 0)64
A.SET.AND.NE:
2 « ((b and c) = 0)4
ASET.L:
zZ«((rc=rb)? (b<0):(b<c)s4
A.SET.GE:
Z«{(rc=rb)? (b>0):(b>c)s4
A.SET.L.U:
z«((rc=rb)? (b>0):((0]lb) < (0] c))®*
ASET.GE.U:
Z«((re=rb)? (b<0): ((0] b)= (0} c))4
endcase
RegWrite(rd, 64, z)
enddef

FIG. 50B

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 297 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 50C

U.S. Patent

Jan. 5§, 2016

Sheet 298 of 509

Operation codes

US 9,229,713 B2

A.SET.E.F.016 Address set equal floating-point half
A.SET.EF.032 Address set equal floating-point single
A.SET.E.F.064 Address set equal floating-point double

ASET.LG.F.016

Address set less greater floating-point half

A.SET.LG.F.032

Address set less greater floating-point single

ASET.LG.F.064 Address set less greater floating-point double
A.SET.L.F.016 Address set less floating-point hatf
A.SET.L.F.032 Address set less floating-point single
A.SET.L.F.064 Address set less floating-point double

A.SET.GE.F.016

Address set grealer equal floating-point half

A.SET.GE.F.032

Address set greater equal floating-point single

A.SET.GE.F.064

Address set greater equal floating-point double

Equivalencies
G.SET.G.F.016 Group set greater floating-point half
G.SET.G.F.032 Group set greater floating-point single
G.SET.G.F.064 Group set greater floating-point double
G.SET.LEF.016 Group set less equal floating-point half
G.SET.LE.F.032 ‘Group set less equal floating-point single
G.SET.LE.F.064 Group set less equal floating-point double

G.SET.G.F.prec rd=rb,rc

— G.SET.L.F.prec rd=rc,rb

G.SET.LE.F.prec rd=rb,rc

— G.SET.GE.F.prec rd=rc,rb

FIG. 51A-1

U.S. Patent Jan. 5,2016 Sheet 299 of 509 US 9,229,713 B2

Selection
class op prec round/trap
set SET. 16 32 64 NONE
E LG
L GE
G LE
Format
A.op.prec rd=rb,rc
rd=aopprec (rb,rc)
31 24 23 18 17 12 11 65 0
| AMINOR | rd | rc | rb | op.prec |
8 6 6 6 6

FIG. 51A-2

U.S. Patent Jan. 5,2016 Sheet 300 of 509 US 9,229,713 B2

Address Set Floating Point: pseudo code

Definition

def GroupFloatingPointReversed(op,prec,,rd,rc,rb) as
¢ « F(prec,RegRead(rc, 128)prec-1..0)
b « F(prec,RegRead(rb, 128)prec-1..0)
v « fcom(b, c)
case op of
G.SET.L.F:
z « (v=L)64
G.SET.GE.F;
z « (v=G or v=E)®4
G.SET.E.F:
z « (v=E)B4
G.SET.LG.F:
z « (v=L or v=G)64
endcase
RegWrite(rd, 64, z)
enddef

FIG. 51B

U.S. Patent Jan. 5,2016 Sheet 301 of 509 US 9,229,713 B2

Address Set Floating Point: exceptions

Exceptions

none

FIG. 51C

U.S. Patent Jan. 5,2016 Sheet 302 of 509 US 9,229,713 B2

Address Shift Left Immediate Add

Operation codes

[A.SHL.I.ADD | Address shift left immediate add |

Format

A.SHL.LADD rd=rc,rb,i

rc=op(ra,rb,i)

31 24 23 1817 1211 65 21 O
{__AMINOR | rd | rc i rb [ASALTAGET gy |
8 6 6 6 6 2

assert 1<i<4
sh « i-1

FIG. 52A

U.S. Patent Jan. 5,2016 Sheet 303 of 509 US 9,229,713 B2

Address Shift Left iImmediate Add: pseudo code

Definition

def AddressShiftLeftimmediateAdd(sh,rd,rc,1b) as
¢ < RegRead(rc, 64)
b < RegRead(rb, 64)
z ¢ c+ (bez.sh.0 || 01*sh)
RegWrite(rd, 64, z)

FIG. 52B

U.S. Patent Jan. 5,2016 Sheet 304 of 509 US 9,229,713 B2

Address Shift Left Immediate Add: exceptions

Exceptions

none

FIG. 52C

U.S. Patent Jan. 5,2016 Sheet 305 of 509 US 9,229,713 B2

Operation codes

[A.SHL.I.SUB | Address shift left immediate subtract]

Format

ASHL.I.SUB rd=rb,i,rc

rd=op(rb,i,rc)

31 24 23 18 17 12 11 65 21 0O
[TAMINOR | rd [rc | rb _]PSHISUE[sh]
8 6 6 6 6 2
assert 1<i<4
sh « i-1

FIG. 53A

U.S. Patent Jan. 5,2016 Sheet 306 of 509 US 9,229,713 B2

Definition

def AddressShiftLeftimmediateSubtract{op,rd,rc,rb) as
¢ « RegRead(rc, 128)
b <« RegRead(rb, 128)
Z ¢ (bez-sh.0 [| 01*SM) - ¢
RegWrite(rd, 64, z)
enddef

FIG. 53B

U.S. Patent Jan. 5,2016 Sheet 307 of 509 US 9,229,713 B2

Exceptions

none

FIG. 53C

U.S. Patent Jan. 5,2016 Sheet 308 of 509 US 9,229,713 B2

Operation codes

A.SHL.I Address shift left immediate
A.SHL.I.O Address shift left immediate signed check overflow
A.SHL.IL.LU.O Address shift left immediate unsigned check overflow
A.SHR.I Address signed shift right immediate
A.SHR.I.U Address shift right immediate unsigned
Redundancies
A.SHL.I rd=rc,1 < A.ADD rd=rc,rc
A.SHL.1.O rd=rc,1 < A.ADD.O rd=rc,rc
A.SHL.1.U.O rd=rc,1 < A.ADD.U.O rd=rc,rc
A.SHL.! rd=rc,0 <> A.COPY rd=rc
A.SHL.1.O rd=rc,0 < A.COPY rd=rc
A.SHL.1.U.O rd=rc,0 < A.COPY rd=rc
A.SHR.I rd=rc,0 < A.COPY rd=rc
A.SHR.L.U rd=rc,0 < A.COPY rd=rc
“Selection
class operation form operand check
shift SHL |
none U 0
SHR | none U
Format
op rd=rc¢,simm
rd=op(rc,simm)
31 24 23 18 17 12 11 65 0
[AMINOR | rd] rc | simm | op |
8 6 6 6 6

FIG. 54A

U.S. Patent Jan. 5,2016 Sheet 309 of 509

Definition

def AddressShifttmmediate(op,rd,rc,simm) as
¢ « RegRead(rc, 64)
case op of
A.SHL.L:
Z ¢ Cg3-simm..0 || 05'MM
A.SHL.L.O:
if 63..63-simm # CRI"™* then
raise FixedPointArithmetic
endif
Z ¢ C63-simm..0 [| 05'™™
A.SHL.LU.O:
if cg3..64-simm * O then

raise FixedPointArithmetic
endif

Z < Cg3-simm..0 || OS'MM
A.SHR.I:
2«2 5“"‘ Il c63..simm
A.SHR.LU:
Z « 0Simm il c63..simm
endcase
RegWrite(rd, 64, z)
enddef

FIG. 54B

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 310 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 54C

U.S. Patent Jan. 5,2016 Sheet 311 of 509 US 9,229,713 B2

Operation codes

| A.MUX | Address multiplex |

Format

A.MUX ra=rd,rc,rb

ra=amux(rd,rc,rb)
31 24 23 18 17 12 1 B 5 0
| Amux | rd | rc | rb | ra |
8 6 6 6 6

FIG. 55A

U.S. Patent Jan. 5,2016 Sheet 312 of 509 US 9,229,713 B2

Definition

def AddressTernary(op,rd,rc,rb,ra) as
d « RegRead(rd, 64)
¢ « RegRead(rc, 64)
b « RegRead(rb, 64)
endcase
case op of
AMUX:
Z « (cand d) or (b and not d)
endcase
RegWrite(ra, 64, z)
enddef

FIG. 55B

U.S. Patent Jan. 5,2016 Sheet 313 of 509 US 9,229,713 B2

Exceptions

none

FIG. 55C

U.S. Patent Jan. 5,2016 Sheet 314 of 509 US 9,229,713 B2

Operation codes

(B | Branch |
Format
B rd
31 24 23 18 17 12 11 65 0
{ B.MNOR | rd | 0 | 0 | B |
8 6 6 6 6

FIG. 56A

U.S. Patent Jan. 5,2016 Sheet 315 of 509 US 9,229,713 B2

Definition

def Branch(rd,rc,rb) as
if (rc = 0) or (rb = 0) then
raise Reserved|nstruction
endif
d « RegRead(rd, 64)
if (d4.0) = 0 then
raise OperandBoundary
endif
ProgramCounter « dg3..2 || 02
raise TakenBranch
enddef

FIG. 56B

U.S. Patent Jan. 5,2016 Sheet 316 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction
Operand Boundary

FIG. 56C

U.S. Patent Jan. 5,2016 Sheet 317 of 509 US 9,229,713 B2

Operation codes

| B.BACK | Branch back |
Format
B.BACK
bback()
31 24 23 18 17 12 11 65 0
| B.MINOR | 0 | 0 | 0 | B.BACK |
8 6 6 6 6

FIG. 57A

U.S. Patent Jan. 5,2016 Sheet 318 of 509 US 9,229,713 B2

Definition

def BranchBack(rd,rc,rb) as
¢ < RegRead(rc, 128)
if (rd = 0) or(rc = 0) or (rb = 0) then
raise Reservedinstruction
endif
Z « LoadMemory(ExceptionBase,ExceptionBase+Thread*128,128,L)
if PrivilegeLevel > c4_p then
PrivilegeLevel « cq_ g
endif
ProgramCounter « cg3_2 || 02
ExceptionState « 0
RegWrite(rd, 128, z)
raise TakenBranchContinue
enddef

FIG. 57B

U.S. Patent Jan. 5,2016 Sheet 319 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 57C

U.S. Patent Jan. 5,2016 Sheet 320 of 509 US 9,229,713 B2

Operation codes

| B.BARRIER | Branch barrier |
Format
B.BARRIER rd
bbarrier(rd)
31 24 23 18 17 12 11 65 0
| B.MINOR | rd i 0 I 0 |B.BARRIER]
8 6 6 6 6

FIG. 58A

U.S. Patent Jan. 5,2016 Sheet 321 of 509 US 9,229,713 B2

Definition

def BranchBarrier(rd,rc,rb) as
if (rc= O) or (rb = 0) then
raise Reservedinstruction
endif
d « RegRead(rd, 64)
if (d1_g)= 0 then
raise OperandBoundary
endif
ProgramCounter « dg3_2 || 02
FetchBarrier()
raise TakenBranch
enddef

FIG. 58B

U.S. Patent Jan. 5,2016 Sheet 322 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

FIG. 58C

U.S. Patent

Jan. 5§, 2016

Sheet 323 of 509

Operation codes

US 9,229,713 B2

B.AND.E Branch and equal zero

B.AND.NE Branch and not equal zero

B.E Branch equal

B.GE Branch greater equal signed

B.L Branch signhed less

B.NE Branch not equal

B.GE.U Branch greater equal unsigned

B.L.U Branch less unsigned
Equivalencies

BEZ Branch equal zero

B.G.Z' Branch greater zero signed

B.GE.Z* Branch greater equal zero signed

B.LZ® Branch less zero signed

B.LE.Z* Branch less equal zero signed

B.NE.Z Branch not equal zero

B.LE Branch less equal signed

B.G Branch greater signed

B.LE.U Branch less equal unsigned

B.G.U Branch greater unsigned

B.NOP Branch no operation

B.E.Z rc target < B.AND.E rc,re.target

B.G.Z rc,target < B.L.Urc,retarget

B.GE.Z rc,larget < B.GE rc,re.target

B.L.Z rc target < B.L rc,re target

B.LE.Z rc,target < B.GE.U re,re target

B.NE.Z rc,target <« B.AND.NE rc,rc target

B.LE rc,rd target — B.GE rd,rc target

B.G rc,rd,target — B.L rd,rctarget

B.LE.U rc,rd,target — B.GE.U rd,rc,target

B.G.U rc,rd,target — B.L.Urd,rc target

B.NOP ' <« B.NEr0,10,%

FIG. 59A-1

U.S. Patent Jan. 5,2016 Sheet 324 of 509 US 9,229,713 B2
Redundancies
B.E rc,re target < B.target
B.NE rc,rc.target < B.NOP
Selection
class op compare type
arithmetic L GE G LE j{none U
vs. Zero L GE G LE |Z
E NE
bitwise none AND E NE
Format
op rd,rc,target
if (op(rd,rc)) goto target;
31 24 23 18 17 12 11 0
l op | rd | rc | offset |
8 6 6 12

FIG. 59A-2

U.S. Patent Jan. 5,2016 Sheet 325 of 509

Definition

def BranchConditionally(op,rd,rc,offset) as
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
case op of
B.E:
z«d=c
B.NE:
Zed=zc
B.AND.E:
zZ«(dandc)=0
BAND.NE:
Z«{dandc)=0
B.L:
Z«{rd=rc)?(c<0):(d<c)
B.GE:
Ze«(rd=rc)?(c20)(d2c)
B.L.U:
Ze(rd=rc)?(c>0){(0]jd)<(0]lc)
B.GE.U:
2« (rd=rc)?(c<0):((0]jd)2(0}ic)
endcase
if z then

ProgramCounter < ProgramCounter + (offset}{ || offset || 02)

raise TakenBranch
endif
enddef

FIG. 598

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 326 of 509 US 9,229,713 B2

Exceptions

none

FIG. 59C

U.S. Patent

Jan. 5§, 2016

Sheet 327 of 509

Operation codes

US 9,229,713 B2

B.E.F.016 Branch equal floating-point half
B.E.F.032 Branch equal floating-point single
B.E.F.064 Branch equal floating-point double
B.E.F.128 Branch equal floating-point quad
B.GE.F.016 Branch greater equal floating-point half
B.GE.F.032 Branch greater equal floating-point single
B.GE.F.064 Branch greater equal floating-point double
B.GE.F.128 Branch greater equal floating-point quad
B.L.F.016 Branch less floating-point half
B.L.F.032 Branch less floating-point single
B.L.F.064 Branch less floating-point double
B.L.F.128 Branch less floating-point quad
B.LG.F.016 Branch less greater floating-point half
B.LG.F.032 Branch less greater floating-point single
B.LG.F.064 Branch less greater floating-point double
B.LG.F.128 Branch less greater floating-point quad
Equivalencies
B.LE.F.016 Branch less equal floating-point half
1B.LE.F.032 Branch less equal floating-point single
B.LE.F.064 Branch less equal floating-point double
B.LE.F.128 Branch less equal floating-point quad
B.G.F.016 Branch greater floating-point half
B.G.F.032 Branch greater floating-point single
B.G.F.064 Branch greater floating-point double
B.G.F.128 Branch greater floating-point quad
B.LE.F.size rc,rd target — B.GE.F.size rd,rc target
B.G.F.size rc,rd target — B.L.F.size rd,rc target

FIG. 60A-1

U.S. Patent Jan. 5,2016 Sheet 328 of 509 US 9,229,713 B2

Selection
number format type compare size
floating-point F E LG L GE G116 32
LE 64
128
Format
op rd,rc,target
if (op(rd,rc)) goto target;
31 24 23 18 17 12 11 0
| op | rd | rc | offset |
8 6 6 12

FIG. 60A-2

U.S. Patent Jan. 5,2016 Sheet 329 of 509

Definition

def BranchConditional(FloatingPointop,rd,rc,offset) as
case op of
B.E.F.16, B.LG.F.16, B.L.F.16, B.GE.F.16:
size « 16
B.E.F.32, B.LG.F.32,B.L.F.32, B.GE.F.32:
size « 32
B.E.F.64, B.LG.F.64, B.L.F.64, B.GE.F.64:
size « 64
B.E.F.128, B.LG.F.128, B.L.F.128, B.GE.F.128:
size « 128
endcase
d « F(size,RegRead(rd, 128))
€ « F(size,RegRead(rc, 128))
v « fcom(d, c)
case op of
BEF16, BEF32, BEF64, BEF128:
z+ (v=E)
BLGF16, BLGF32, BLGF64, BLGF128:
z« (v=L)or{v=0)
BLF16, BLF32, BLF64, BLF128:
zZe (v=1)
BGEF16, BGEF32, BGEF64, BGEF128:
2« (v=G)or(v=E)
endcase
if z then
ProgramCounter « ProgramCounter + (offset3] || offset || 02)
raise TakenBranch
endif
enddef

FIG. 60B

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 330 of 509 US 9,229,713 B2

Exceptions

none

FIG. 60C

U.S. Patent Jan. 5,2016 Sheet 331 of 509 US 9,229,713 B2

Operation codes

B.l.F.032 Branch invisible floating-point single

B.NI.F.032 Branch not invisible floating-point single

B.NV.F.032 Branch not visible floating-point single

B.V.F.032 Branch visible floating-point single
Selection

number format type compare size

floating-point F | NI NV V 32
Format

op rc,rd,target

if-(op(rc,rd)) goto target;
31 24 23 18 17 12 11 0

I op | rd | rc | offset |
8 6 6 12

FIG. 61A

U.S. Patent Jan. 5,2016 Sheet 332 of 509 US 9,229,713 B2

Definition
def n(z) as (z.t=QNAN) or (z.t=SNAN) enddef
def less(z,b) as fcom(z,b)=L enddef

def trxya,b,c,d) as (fcom(fabs(z),b)=G) and (fcom(fabs(c),d)=G) and (z.s=c.s) enddef

def BranchConditionalVisibilityFloatingPoint(op,rd,rc,offset) as
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
dx « F(32,d31_0)
cx « F(32,¢31_0)
dy « F(32,dg3.32)

cy « F(32,c63..32)
dz « F(32,dgs5_g4)
cz + F(32,cg5, 64)
dw « F(32,d127..98)
cw « F(32,c127..96)
f1 « F(32,0x7f000000) // floating-point 1.0
if {n(dx) or n(dy) or n{dz) or n(dw) or n{cx) or n(cy) or n{cz) or n(cw)) then
z « false
else
dv « less(fabs(dx),dz) and less(fabs(dy),dz) and less(dz,f1) and (dz.s=0)
cv « less(fabs(cx),cz) and less(fabs(cy),cz) and less{cz,f1) and (cz.5=0)
trz « (less(f1,dz) and less(f1,cz)) or {(dz.s=1 and cz.s=1))
tr « trxy(dx,dz,cx,cz) or trxy(dy,dz,cy,cz) or trz
case op of
B.L.F.32:
Zetr
B.NL.F.32:
Z « nottr
B.NV.F.32:
Z « not (dv and cv)
B.V.F.32:
Z < dvandcv
endcase
endif
if z then

ProgramCounter « ProgramCounter + (offset] || offset || 02)

raise TakenBranch
endif
enddef

FIG. 61B

U.S. Patent Jan. 5,2016 Sheet 333 of 509 US 9,229,713 B2

Exceptions

none

FIG. 61C

U.S. Patent Jan. 5,2016 Sheet 334 of 509 US 9,229,713 B2

Operation codes

| B.DOWN | Branch down]
Format
B.DOWN rd
bdown(rd)
31 24 23 18 17 12 11 65 0
[BMNOR | rd | 0 | 0 | B.DOWN |
8 6 6 6 6

FIG. 62A

U.S. Patent Jan. 5,2016 Sheet 335 of 509 US 9,229,713 B2

Definition

def BranchDown(rd,rc,rb) as
if (rc # 0) or (rb = 0) then
raise ReservedInstruction
endif

d « RegRead(rd, 64)

if PrivilegeLevel > d4_g then
PrivilegeLevel « dy_g

endif

ProgramCounter « dg3_2 || 02

raise TakenBranch
enddef

FIG. 62B

U.S. Patent Jan. 5,2016 Sheet 336 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

FIG. 62C

U.S. Patent Jan. 5,2016 Sheet 337 of 509 US 9,229,713 B2

Operation codes

[B.HALT [Branch halt |
Format
B.HALT
bhalt()
31 24 23 18 17 12 11 65 0
| BMINOR | "o | 0 | 0 | B.HALT |
8 6 6 6 6

FIG. 63A

U.S. Patent Jan. 5,2016 Sheet 338 of 509 US 9,229,713 B2

Definition

def BranchHalt(rd,rc,rb) as
if (rd = 0) or (rc = 0) or (rb = 0) then
raise ReservedInstruction
endif
FetchHalt

FIG. 63B

U.S. Patent Jan. 5,2016 Sheet 339 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

FIG. 63C

U.S. Patent Jan. 5,2016 Sheet 340 of 509 US 9,229,713 B2

Operation codes

{B.HINT.I | Branch Hint Immediate |

Format

B.HINT. badd,count,target

bhinti(badd,count,target)

31 24 23 18 17 1211 0

| BHINTI | simm | count | offset |
8 6 6 12

simm <« badd-pc-4

FIG. 64A

U.S. Patent Jan. 5,2016 Sheet 341 of 509 US 9,229,713 B2

Definition

def BranchHintimmediate(simm,count,offset) as
BranchHint(ProgramCounter + 4 + (0 || simm | 02), count,
ProgramCounter + (offset§ || offset || 02))
enddef

FIG. 64B

U.S. Patent Jan. 5,2016 Sheet 342 of 509 US 9,229,713 B2

Exceptions

none

FIG. 64C

U.S. Patent Jan. 5,2016 Sheet 343 of 509 US 9,229,713 B2
Operation codes
(B.I | Branch immediate |
Redundancies
[B.I target < B.E rc,rc,target]
Format
B.l target
bi(target)
31 24 23 0
| B.l | offset |
8 24

FIiG. 65A

U.S. Patent Jan. 5,2016 Sheet 344 of 509 US 9,229,713 B2

Definition

def Branchimmediate(offset) as
ProgramCounter « ProgramCounter + (offset3§ || offset || 02)

raise TakenBranch
enddef

FIG. 65B

U.S. Patent Jan. 5,2016 Sheet 345 of 509 US 9,229,713 B2

Exceptions

none

FIG. 65C

U.S. Patent Jan. 5,2016 Sheet 346 of 509 US 9,229,713 B2

Operation codes

IB.LINK.| | Branch immediate link |

Format

B.LINK.I target

blinki(target)
31 24 23 0

| B.LINKI | offset |
8 24

FIG. 66A

U.S. Patent Jan. 5,2016 Sheet 347 of 509 US 9,229,713 B2

Definition

def BranchimmediateLink(offset) as
RegWrite(0, 64, ProgramCounter + 4)
ProgramCounter « ProgramCounter + (offset3§ || offset || 02)

raise TakenBranch
enddef

FIG. 66B

U.S. Patent Jan. 5,2016 Sheet 348 of 509 US 9,229,713 B2

Exceptions

none

FIG. 66C

U.S. Patent Jan. 5,2016 Sheet 349 of 509 US 9,229,713 B2

Operation codes

[B.LINK | Branch link |
Equivalencies
B.LINK « B.LINK0=0
B.LINK rc <« B.LINK O=rc
Format

B.LINK rd=rc

31 24 23 18 17 12 11 65 0

{ B.MINOR | rd | rc | 0 | B.LINK |
8 6 6 6 6

b« 0

FIG. 67A

U.S. Patent Jan. 5,2016 Sheet 350 of 509 US 9,229,713 B2

Definition

def Branchlink(rd,rc,rb) as
if rb = 0 then
raise ReservedInstruction
endif
¢ « RegRead(rc, 64)
if (c and 3) # O then
raise OperandBoundary
endif
Z « ProgramCounter + 4
RegWrite(rd, 64, z)
ProgramCounter « cg3_2 || 02
raise TakenBranch
enddef

FIG. 67B

U.S. Patent Jan. 5,2016 Sheet 351 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction
Operand Boundary

FIG. 67C

U.S. Patent

Jan. 5, 2016 Sheet 352 of 509

Operation codes

US 9,229,713 B2

L.008> Load signed byte

L.016.B Load signed doublet big-endian
L.016.A.B Load signed doublet aligned big-endian
L.016.L Load signed doublet little-endian
L.016.A.L Load signed doublet aligned little-endian
L.032.8 L oad signed quadiet big-endian
L.032.A.B Load signed quadlet aligned big-endian
L.032.L Load signed quadlet little-endian
L.O32.A.L Load signed quadlet aligned little-endian
L.064.B Load signed octlet big-endian

L.064.A.B Load signed octlet aligned big-endian
L.064.L Load signed octlet little-endian

L.064.AL Load signed octlet aligned little-endian
L.128.B° Load hexlet big-endian

L.128.A.B’ Load hexlet aligned big-endian

L.128.L° Load hexlet little-endian

L.128.AL° Load hexlet aligned little-endian
L.u.008™ Load unsigned byte

L.U.016.B Load unsigned doublet big-endian
L.U.016.A.B Load unsigned doublet aligned big-endian
L.U.016.L Load unsigned doublet little-endian
L.U.O16.A.L Load unsigned doublet aligned little-endian
L.U.032.B Load unsigned quadiet big-endian
L.U.032.AB Load unsigned quadiet aligned big-endian
L.U.032.L Load unsigned quadlet little-endian
L.U.032.AL Load unsigned quadlet aligned little-endian
L.U.064.B Load unsigned octlet big-endian
L.U.064.A.B Load unsigned octlet aligned big-endian
L.U.064.L Load unsigned octlet little-endian
L.U.064.A.L Load unsigned octlet aligned littie-endian

FIG. 68A-1

U.S. Patent Jan. 5,2016 Sheet 353 of 509 US 9,229,713 B2

Equivalencies
{ op rd=rc,rb « op rd=rc,rb,0 |
Selection
number format type size alignment | ordering
| signed byte 8
unsigned byte U 8
signed integer 1632 64 L B
| signed integer aligned 16 32 64 |A L B
unsigned integer U 16 32 64 L B
unsigned integer aligned U 16 32 64 A L B
| general register 128 L B
general register aligned 128 A L B
Format
op rd=rc,rb,i
rd=op(rc,rb,i)
31 24 23 18 17 12 11 6 54 0
[LMNOR | rd | rc | rb li] op |
8 6 6 6 1 5

FIG. 68A-2

U.S. Patent Jan. 5,2016 Sheet 354 of 509 US 9,229,713 B2

Definition

def Load(op,rd,re.rb i) as
case op of
L16L, L32L, L8, L16AL, L32AL, L1168, 1.32B, L.16AB, L32AB,
L64L, L64AL, L64B, L64AB:
signed <« true
LU1BL, LU32L, LUS, LU16AL, LU32AL, LU16B, LU32B, LU16AB, LU32AB,
LUBAL, LUG4AL, LUG4B, LUG4AB:
signed «- false
L128L, L128AL, 1.128B, L128AB:
signed « undefined
endcase
case op of
L8, LU8:
size « 8
L16L, LU16L, L16AL, LU1BAL, L16B, LU16B, L16AB, LU16AB:
size « 16
L32L, LU32L, L32AL, LU32AL, L32B, LU328B, L32AB, LU32AB:
8ize « 32
LB4L, LUB4L, L64AL, LUB4AL, L64B, LUBAB, L64AB, LUG4AB:
size « 64
L128L, L12BAL, L128B, L128AR:
size « 128
angease
Isize « log{size)
case op of
L16L, LU6L, L32L, LU32L, L64L, Lus4l,, L128L,
L16AL, LU1BAL, L32AL, LU32AL, L64AL, LUB4AL, L128AL:
order « L
L16B, LU16B, L.32B, LU32B, L64B, LU648B, L1288,
L16AB, LU16AB, L32AB, LLU32AB, L64AB, LUG4AB, L128AB:
order « B
L8, LUS:
order « undefined
endcase
¢ « RegRead(rc, 64)
b « RegRead(rb, 64)
VirtAddr « ¢ + (i + bgg-Isize..0) I} 0'5iZ€-3)

FIG. 68B-1

U.S. Patent Jan. 5,2016 Sheet 355 of 509 US 9,229,713 B2

case op of
L16AL, LU16AL, L32AL, LU32AL, L64AL, LUB4AL, L128AL,
L16AB, LU16AB, L32AB, LU32AB, L64AB, LUG4AB, L128AB:
if (Clsize-4..0 # O then
raise OperandBoundary
endif
L16L, LU16L, L32L, LU32L, L64L, LU6G4L, L128L,
L16B, LU1EB, L32B, LU32B, L64B, LU64B, L128B:
L8, LUS8:
endcase
m «<— LoadMemory(c,VirtAddr,size,order)
2 « (mgjze-1 and signed)128-size ||
RegWrite(rd, 128, z)
enddef

FIG. 68B-2

U.S. Patent Jan. 5,2016 Sheet 356 of 509 US 9,229,713 B2

Exceptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 68C

U.S. Patent

Jan. 5, 2016 Sheet 357 of 509

US 9,229,713 B2

Operation codes

L.1.008" Load immediate signed byte

L.1.016.A.B Load immediate signed doublet aligned big-endian
L..016.B Load immediate signed doublet big-endian
L.I.O16.A.L Load immediate signed doublet aligned little-endian
L.LO16.L Load immediate signed doublet little-endian
L..032.A.B Load immediate signed quadlet aligned big-endian
L.1.032.B Load immediate signed quadlet big-endian
L.I.032.A.L Load immediate signed quadlet aligned little-endian
L.1.032.L Load immediate signed quadiet little-endian
L..064.A.B Load immediate signed octiet aligned big-endian
L.1.064.B Load immediate signed octlet big-endian

L..064 AL Load immediate signed octlet aligned little-endian
L..064.L Load immediate signed octlet little-endian
L..128.AB™ Load immediate hexlet aligned big-endian
L..128.B" Load immediate hexlet big-endian

L1128 AL" Load immediate hexlet aligned little-endian
L.1.128.L"7 Load immediate hexlet little-endian

L.1.U.008™° Load immediate unsigned byte

L.LU.O16.A.B Load immediate unsigned doublet aligned big-endian
L.1U.016.B Load immediate unsigned doublet big-endian
L.LU.O16.A.L Load immediate unsigned doublet aligned little-endian
LI1U.016.L Load immediate unsigned doublet little-endian
L.1.U.032.A.B Load immediate unsigned quadlet aligned big-endian
L.1.U.032.B Load immediate unsigned quadlet big-endian
L.LU.032.A.L Load immediate unsigned quadlet aligned little-endian
L.1.U.032.L Load immediate unsigned quadiet little-endian
L1U.064.A.B L oad immediate unsigned octlet aligned big-endian
L.1.U.064.B Load immediate unsigned octlet big-endian
L.L.U.064.A.L Load immediate unsigned octlet aligned little-endian
L.1.U.064.L Load immediate unsigned octlet little-endian

FIG. 63A-1

U.S. Patent Jan. 5,2016 Sheet 358 of 509 US 9,229,713 B2

Selection
number format type size alignment jordering
signed byte 8
unsigned byle U 8
signed integer 16 32 64 L B
signed integer aligned 16 32 64 |A L B
unsigned integer U 16 32 64 L B
unsigned integer aligned U 16 32 64 |A L B
general register 128 L B
general register aligned 128 A L B
Format
op rd=rc,offset
rd=op(rc,offset)
31 24 23 18 17 12 11 0
l op | rd | rc | offset |
8 6 6 12

FIG. 69A-2

U.S. Patent Jan. 5,2016 Sheet 359 of 509 US 9,229,713 B2

Definition

def Loadlmmediate(op,rd,rc,offset) as
case op of
LIM6L, LI32L, LI8, LIM6AL, LI32AL, LI16B, LI32B, LI16AB, LI32AB:
LIGAL, LIB4AL, LI64B, LIG4AB:
signed « true
LIU16L, LIU32L, LIU8, LIU16AL, LIU32AL,
LIU16B, LIU32B, LIU16AB, LIU32AB:
LIUB4L, LIUG4AL, LIUB4B, LIUB4AB:
signed « false
LI128L, LI128AL, LI128B, LI128AB:
signed « undefined
endcase
case op of
LI8, LIUS:
size «+ 8
LI16L, LIU16L, LIBAL, LIU16AL, LI16B, LIU16B, LI16AB, LIU16AB:
size « 16
LI32L, LIU32L, LI32AL, LIU32AL, LI32B, LIU32B, LI32AB, LIU32AB:
size « 32
LiB4L, LIUB4L, LIB4AL, LIUG4AL, LI64B, LIUG4B, LIG4AB, LIUG4AB:
size « 64
LI128L, LI128AL, LI1128B, LI1128AB:
size « 128
endcase
Isize « log(size)
case op of
LI16L, LIU16L, LI32L, LIU32L, LiB4L, LIU64L, LI128L,
LIM6AL, LIU16AL, LI32AL, LIU32AL, LI64AL, LIUG4AL, LI128AL:
order « LI
Li16B, LIU16B, LI132B, LIU32B, L164B, LIU64B, LI128B,
LI16AB, LIU16AB, LI32AB, LIU32AB, LI6G4AB, LIUG4AB, LI128AB:
order « B
LI8, LIU8:
order « undefined
endcase
¢ < RegRead(rc, 64)
VirtAddr « ¢ + (offsetysize || offset || 0Isize-3)

case op of
LIMBAL, LIU1BAL, LI32AL, LIU32AL, LIG4AL, LIUB4AL, LI128AL,
LIM6AB, LIU16AB, L132AB, LIU32AB, LI64AB, LIUG4AB, Li128AB:
if (Cisize4..0 # O then
raise OperandBoundary
endif
LI16L, LIU16L, LI32L, LIU32L, LIG4L, LIu64L, LI128L,

FIG. 69B-1

U.S. Patent Jan. 5,2016 Sheet 360 of 509 US 9,229,713 B2

Li16B, LIU16B, L1328, LIU32RB, L1648, LIUB4B, LI128B;
LI8, LIUg:
endcase
m « LoadMemory(c,VinAddr,size,arder)
2 « (Msize-1 and signed)128-5iz || m
RegWrite(rd, 128, 2)
enddef

FIG. 69B-2

U.S. Patent Jan. 5,2016 Sheet 361 of 509 US 9,229,713 B2

Exceptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 69C

U.S. Patent Jan. 5,2016 Sheet 362 of 509 US 9,229,713 B2

Operation codes

s.8" Store byte

S.16.B Store double big-endian

S.16.AB Store double aligned big-endian

S.16.L Store double little-endian

S.16.AL Store double aligned little-endian

S.32.B Store quadlet big-endian

S.32.A.B Store quadiet aligned big-endian

S.32.L: Store quadiet little-endian

S.32.A.L Store quadlet aligned little-endian

S.64.B Store octlet big-endian

S.64.A.B Store octlet aligned big-endian

S.64.L Store octlet little-endian

S.64.A.L Store octlet aligned little-endian

S.128.B Store hexlet big-endian

S.128.A.B Store hexlet aligned big-endian

S.128.L Store hexlet little-endian

S.128.A.L Store hexlet aligned little-endian

S.MUX.64.A.B Store multiplex octiet aligned big-endian

S.MUX.64.A.L Store multiplex octlet aligned little-endian
Equivalencies

{ op rd,rc,rb « oprd,rcrb,0 |

Selection

number format op size alignment _ Jordering |

byte 8 ‘ :

integer 16 32 64 128 L B

integer aligned 16 32 64 128 A L B

multiplex MUX 64 A L B
Format

op rdrerb,
op(rd,rc,rb,i)
31 24 23 1817 12 11 6 5 0
[SMINOR | d | e | rb il op |
’ 8 6 6 6 1 5

FIG. 70A

U.S. Patent Jan. 5,2016 Sheet 363 of 509 US 9,229,713 B2

Definition

def Store(op,rd,rc,rb.i) as
case op of
S8:
size «- 8
S16L, S16AL, S168B, S16AB:
size « 16
S32L, S32AL, S32B, $32AB:
size « 32
S64L, S64AL, S64B, S64AB,
SMUX64AB, SMUXG4AL:
size « 64
S128L, S128AL, S128B, S128AB:
size « 128
endcase
Isize « log(size)
case op of
S8:
order « undefined
S16L, S32L, S64L, S128L,
S16AL, S32AL, S64AL, S128AL, SMUX64ALI:
order « L
S16B, S32B, S64B, S1288,
S16AB, S32AB, S64AB, S128AB, SMUXG64ABI:
order « B
endcase
¢ <« RegRead(rc, 64)
b « RegRead(rb, 64)
VittAddr « ¢ + ((i + bggsize..0) || 0'578-3)
case op of
S16AL, S32AL, S64AL, S128AL,
S16AB, S32AB, S64AB, S128AB,
SMUXB4AB, SMUXG64AL.:
if (Cisize—4..0 # O then
raise OperandBoundary
endif
S16L, S32L, S64L., S128L,
S16B, S32B, S64B, $51288B:
S8:
endcase
d « RegRead(rd, 128)
case op of
S8,
S16L, S16AL, S16B, S16AB,
$32L, S32AL, $32B, S32AB,
S64L, S64AL, S64B, S64AB,
S$128L, S128AL, S128B, S128A8B:
StoreMemory(c,VirtAddr,size,order,dgize-1..0)

FIG. 70B-1

U.S. Patent Jan. 5,2016 Sheet 364 of 509 US 9,229,713 B2

SMUX64AB, SMUXG64AL:

lock
cm « LoadMemoryW(c,VirtAddr,size,order)
m « (d127..64 & dg3..0) | (cm & ~dg3.0)
StoreMemory(c, VirtAddr,size,order,m)

endlock

endcase
enddef

FIG. 70B-2

U.S. Patent Jan. 5,2016 Sheet 365 of 509 US 9,229,713 B2

Exceptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 70C

U.S. Patent Jan. 5,2016 Sheet 366 of 509 US 9,229,713 B2

Operation codes

S.D.C.S.64AB Store double compare swap octlet aligned big-endian
S.D.C.S.64.A.L Store double compare swap octlet aligned little-endian

Format

op rd@re,rb

rd=ap(rd,re.rb)
<K 24 23 18 17 12 11 6 54 0

| S.MINOR | rd | rc 1 o o] op |
8 6 6) 6 1

FIG. 71A

U.S. Patent Jan. 5,2016 Sheet 367 of 509

Definition

def StoreDoubleCompareSwap(op,rd,rc,rb) as
size « 64
Isize « log(size)
case op of
SDCS64AL:
order « L
SDCSB4AB:
order + B
endcase
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
d « RegRead(rd, 128)
if (c2._ 0= 0)or (bg_g = 0) then
raise OperandBoundary
endif
lock

US 9,229,713 B2

cbm « LoadMemoryW(cg3 .0,C63..0.64,0rder)||LoadMemoryW(bg3, o, be3..0.64,0rder)

if ((c127.64 |l b127..64.) = cbm) then
StoreMemory((cg3,.0,c63..0.64,0rder,d 27, 64)
StoreMemory(bg3_.0,bs3..0,64,0rder,dg3_ o)
endif
endlock
RegWrite(rd, 128, a)
enddef

FIG.71B

U.S. Patent Jan. 5,2016 Sheet 368 of 509 US 9,229,713 B2

Exceptions

Opcrand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 71C

U.S. Patent

Jan. 5, 2016 Sheet 369 of 509

Operation codes

US 9,229,713 B2

S..0087 Store immediate byte
S.1.016.A.B Store immediate double aligned big-endian
S..016.B Store immediate double big-endian
S.1.016.A.L Store immediate double aligned little-endian
S..016.L Store immediate double little-endian
S.1.032.AB Store immediate quadlet aligned big-endian
$.1.032.8 Store immediate quadlet big-endian
S.1.032.AL Store immediate quadlet aligned little-endian
S.1.032.L Store immediate quadlet little-endian
S.1.064.AB Store immediate octlet aligned big-endian_-
S.1.064.8 Store immediate octlet big-endian
S.1.064.A.L Store immediate octlet aligned little-endian
S.1.064.L Store immediate octlet little-endian
S.1.128.A.B Store immediate hexlst aligned big-endian
S..128.B Store immediate hexlet big-endian
S.1L128AL Store immediate hexlet aligned little-endian
S.1.128.L Store immediate hexlet litle-endian
S.MUXI.64.A.B Store multiplex immediate octlet aligned big-endian
S.MUXI.64 A.L Store muiltiplex immediate octlet aligned little-endian
Selection
number format op size alignment ordering
byte 8
integer 16 32 64 128 L B
integer aligned 16 32 64 128 A L B
mulliplex MUX 64 A L B
Format
S.op.l.size.align.order rd,rc,offset
sopisizealignorder(rd,rc,offset)
31 24 23 18 17 12 1 0
[op | d | rc | offset i
8 6 6 12

FIG. 72A

U.S. Patent Jan. 5,2016 Sheet 370 of 509

Definition

def Storelmmediate(op,rd,rc,offset) as
case op of

Si8:
size « 8

SI6L, SI16AL, SI116B, SI16AB:
size « 16

SI32L, SI32AL, SI32B, SI32AB:
size « 32

SI64L, SIG4AL, SI64B, SI64AB, SMUXIG4AB, SMUXIG4AL:

size « 64
SI128L, SI128AL, SI128B, S1128AB:
size « 128
endcase
Isize « log(size)
case op of
SI8:
order « undefined
SI16L, SI32L, Sle4L, S1128L,
SI16AL, SI32AL, SI64AL, SIM128AL, SMUXIB4AL:
order « L
S116B, SI32B, SI64B, S1128B,
SI16AB, SI32AB, SI64AB, SI128AB, SMUXI64AB:
order «+ B
endcase
¢ « RegRead(rc, 64)
VirtAddr « c + (offsety3size || offset || 0'size-3)

case op of
SI16AL, SI32AL, SIB4AL, SI128AL,
SI16AB, SI32AB, SI64AB, SI128A8,
SMUXI64A8B, SMUXIG4AL:
if (CIsize-4..0 # 0 then
raise OperandBoundary
endif
SH6L, SI32L, SIe4L, Si128L,
Si16B, SI32B, SI64B, SI1128B:
Si8:
endcase
d « RegRead(rd, 128)
case op of
SI8,
SIH6L, S116AL, SI116B, SI16AB,
SI32L, SI32AL, SI32B, SI32AB,
SI64L, SI64AL, S164B, SI64AB,
Si128L, SI128AL, S1128B, SI1128AB:

FIG. 72B-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 371 of 509 US 9,229,713 B2

StoreMemory(c,VirtAddr,size,order,dgize-1..0)
SMUXIB4AB, SMUXIB4AL:

lock
cm « LoadMemoryW(c,VirtAddr,size,order)
m « (d127..64 & J63..0) | (cm & ~dg3.0)
StoreMemory(c,VirtAddr,size,order,m)

endlock

endcase
enddef

FIG. 72B-2

U.S. Patent Jan. 5,2016 Sheet 372 of 509 US 9,229,713 B2

Exeeptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 72C

U.S. Patent Jan. 5,2016 Sheet 373 of 509 US 9,229,713 B2

Operation codes

S.A.S.1.64.AB Store add swap immediate octlet aligned big-endian
S.AS.I64AL Store add swap immediate octlet aligned little-endian
S.C.S.1.64.A.B Store compare swap immediate ocllet aligned big-endian
S.C.S.1.64. AL Store compare swap immediate ocllet aligned little-endian
S.M.S..64.AB Store multiplex swap immediate octlet aligned big-endian
S.MS.164 AL Store multiplex swap immediate octlet aligned little-endian
Selection
number format op size alignment ordering |
add-swap AS 64 A L B
compare-swap Cs 64 A L B
multiplex-swap MS 64 A L B
Format
S.op.|.64.align.order rd@rc,offset
rd=sopib4alignorder(rd,rc,offset)
31 24 23 18 17 12 11 0
| op | rd | rc | offset]
8 6 6 12

FIG. 73A

U.S. Patent Jan. 5,2016 Sheet 374 of 509 US 9,229,713 B2

Definition

def Storelmmediateinplace{op,rd,rc,offset) as
siza « 64
Isize « log(size)
case op of
SASIG4AL, SCSIGAAL, SMSIG4AL:
order « L
SASIG4AB, SCSI64AB, SMSIG4AB:
order « B
endcase
¢ «+ RegRead(re, 64)
VirtAddr « ¢ + (offset3§5ize || offset |} 0'size-3)
if (Cisize-4..0 # 0 then
raise OperandBoundary
endif
d « RegRead(rd, 128)
case op of
SASIG4AAB, SASIGAAL:
lock
Z « LoadMemoryW(c,VirtAddr,size,order)
StoreMemory(c,VirtAddr,size,order,dg3 0+2)
endlock
SCSI64AB, SCSIB4AL:
lock
Z « LoadMemoryW(c,VirtAddr,size,order)
if (z = dg3.p) then
StoreMemory(c,VirtAddr,size,order,d4127. 64)
endif
endlock
SMSIB4AB, SMSIBMAL:
fock
z « LoadMemoryW(c,VirtAddr,size,order)
m « (d127.64 & dg3.0) | (z & ~dg3.0)
StoreMemory(c,VirtAddr,size,order,m)
endlock
endcase
RegWrite(rd, 64, 2)
enddef

FIG. 73B

U.S. Patent Jan. 5,2016 Sheet 375 of 509 US 9,229,713 B2

Exceptions

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 73C

U.S. Patent

Jan. 5, 2016 Sheet 376 of 509

Operation codes

S.AS.64.AB Store add swap octlet aligned big-endian
S.AS.64.A.L Store add swap octlet aligned little-endian
S.C.S64.AB Store compare swap octlet aligned big-endian
S.C.S.64 AL Store compare swap octlet aligned little-endian
S.M.S.64.A.B Store multiplex swap octlet aligned big-endian
S.M.S.64.A.L Store multiplex swap octlet aligned little-endian
Equivalencies
| op rd@rc,rb <« oprd@rc,rb,0
Selection
number format op size alignment ordering
add-swap A.S 64 A L B
compare-swap C.S 64 A L B
multiplex-swap M.S 64 A L B
Format
op rd@rc,rb,i
rd=op(rd,rc,rb,i)
31 24 23 18 17 12 11 65 4 0
| S.MINOR | rd | rc | rb il op |
8 6 6 6 1 5

FIG. 74A

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 377 of 509 US 9,229,713 B2

Definition

def Storelnplace(op,rd,rc,rb,i) as
size « 64
Isize « log(size)
case op of
SAS64AL, SCS64AL, SMS64AL:
order « L
SAS64AB, SCS64AB, SMS64AB:
order «+ B
endcase
¢ « RegRead(rc, 64)
b « RegRead(rb, 64)
VirtAddr « ¢ + ((i + bgg.isize..0) | 0'5i26-3)
if (Cigize-4..0 # 0 then
raise OperandBoundary
endif
d « RegRead(rd, 128)
case op of
SASB4AB, SAS6G4AL:
lock
z « LoadMemoryW(c,VirtAddr,size,order)
StoreMemory(c,VirtAddr,size,order,dg3_p+2z)
endlock
SCS64AB, SCS64AL:
lock
Z « LoadMemoryW(c,VirtAddr,size,order)
if (z = dg3.0) then
StoreMemory(c,VirtAddr,size,order,d127. 64)
endif
endlock
SMS64ARB, SMS64AL:
lock
z « LoadMemoryW(c,VirtAddr, size,order)
m « (d127..64 & dg3..0) | (z & ~dg3._0)
StoreMemaory(c,VirtAddr,size,order,m)
endlock
endcase
RegWrite(rd, 64, z)
enddef

FIG. 74B

U.S. Patent Jan. 5,2016 Sheet 378 of 509 US 9,229,713 B2

Operand Boundary

Access disallowed by tag

Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss

Global TB miss

FIG. 74C

U.S. Patent

Jan. 5, 2016

Sheet 379 of 509

Operation codes

US 9,229,713 B2

G.ADD.H.008.C Group add halve signed bytes ceiling
G.ADD.H.008.F Group add halve signed bytes floor
G.ADD.H.008.N Group add halve signed bytes nearest
G.ADD.H.008.Z Group add halve signed bytes zero
G.ADD.H.016.C Group add halve signed doublets ceiling
G.ADD.H.016.F Group add halve signed doublets floor
G.ADD.H.016.N Group add halve signed doublets nearest
G.ADD.H.016.Z Group add halve signed doublets zero
G.ADD.H.032.C Group add halve signed quadlets ceiling
G.ADD.H.032.F Group add halve signed quadlets floor
G.ADD.H.032.N Group add halve signed quadlets nearest
G.ADD.H.032.Z Group add halve signed quadlets zero
G.ADD.H.064.C Group add halve signed octlets ceiling
G.ADD.H.064.F Group add halve signed octlets floor
G.ADD.H.064.N Group add halve signed octlets nearest
G.ADD.H.064.Z Group add halve signed octlets zero
G.ADD.H.128.C Group add halve signed hexlet ceiling
'G.ADD.H.128.F Group add halve signed hexlet floor
G.ADD.H.128.N Group add halve signed hexlet nearest
G.ADD.H.128.Z Group add halve signed hexlet zero

G.ADD.H.U.008.C

Group add halve unsigned bytes ceiling

G.ADD.H.U.008.F

Group add halve unsigned bytes floor

G.ADD.H.U.008.N

Group add halve unsigned bytes nearest

G.ADD.H.U.016.C

Group add halve unsigned doublets ceiling

G.ADD.H.U.016.F

Group add halve unsigned doublets floor

G.ADD.H.U.016.N

Group add halve unsigned doublets nearest

G.ADD.H.U.032.C

Group add halve unsigned quadlets ceiling

G.ADD.H.U.032.F

Group add halve unsigned quadlets floor

G.ADD.H.U.032.N

Group add halve unsigned quadlets nearest

G.ADD.H.U.084.C

Group add halve unsigned octlets ceiling

G.ADD.H.U.064.F

Group add halve unsigned octlets floor

G.ADD.H.U.064.N

Group add halve unsigned octlets nearest

G.ADD.H.U.128.C

Group add halve unsigned hexlet ceiling

G.ADD.H.U.128.F

Group add halve unsigned hexlet floor

G.ADD.H.U.128.N

Group add halve unsigned hexlet nearest

FIG. 75A-1

U.S. Patent Jan. 5,2016 Sheet 380 of 509 US 9,229,713 B2

Redundancles
G.ADD.H.size.rnd rd=rc,rc « G.COPY rd=rc
G.ADD.H.Ussizemndrd=rerc = o G.COPY rd=rc
Format

G.op.size.mdrdsre,rb

rd=gopsizernd(rc,rb)

31 24 23 18 17 12 14 6 5 21 0
| G.size] rd | re | rb | op [rnd]
8 6 6 & 4 p]

FIG. T5A-2

U.S. Patent Jan. 5,2016 Sheet 381 of 509 US 9,229,713 B2

Definition

def GroupAddHalve(op,md,size,rd,rc.rb)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
case op of
G.ADDHC, G.ADDHF, G.ADDHN, G.ADDHZ:
a5+ CS ¢ hs « 1
G.ADDHUC, G.ADDHUF, G.ADDHUN, G.ADDHUZ
as«—Ccs¢+bse 0
if rnd = Z then
raise Reservedinstruction
endif
endcase
h « size+1
re1
for i «— 0 to 128-size by size
P « ((cs and Cgjze-1) || Csize-1+i..i} + (DS and bgize-1) || bsize-1+i..1)
case rnd of
none, N:
s 0522 | py
Z:
$ & 0528 || pgjze
F:
s « (Size+1
C:
s « (Size I 11
endcase
Vv « ((as & psize)llp) + (0ls)
Zgize-1+41..1 ¢ Vsize..1
endfor
RegWrite(rd, 128, z)
enddef

FIG. 75B

U.S. Patent Jan. 5,2016 Sheet 382 of 509 US 9,229,713 B2

Exceptions

Reservedlnstruction

FIG. 75C

U.S. Patent Jan. 5,2016 Sheet 383 of 509

Operation codes

US 9,229,713 B2

G.COM.AND.E.008

Group compare and equal zero bytes

G.COM.AND.E.016

Group compare and equal zero doublets

G.COM.AND.E.032

Group compare and equal zero quadlets

G.COM.AND.E.064

Group compare and equal zero octlets

G.COM.AND.E.128

Group compare and equal zero hexlet

G.COM.AND.NE.008

Group compare and not equal zero bytes

G.COM.AND.NE.016

Group compare and not equal zero.doublets

G.COM.AND.NE.032 | Group compare and not equal zero quadlets
G.COM.AND.NE.064 | Group compare and not equal zero octlets
G.COM.AND.NE.128 | Group compare and not equal zero hexiet
G.COM.E.008 Group compare equal bytes

G.COM.E.016 Group compare equal doublats
G.COM.E.032 Group compare equal quadlets
G.COM.E.064 Group compare equal octlets

G.COM.E.128 Group compare equal hexlet
G.COM.GE.008 Group compare greater equal signed bytes
G.COM.GE.016 Group compare greater equal signed doublets
G.COM.GE.032 Group compare greater equal signed quadlets
G.COM.GE.(064 Group compare greater equal signed octlets
G.COM.GE.128 Group compare greater equal signed hexlet

G.COM.GE.U.008

Group compare greater equal unsigned bytes

G.COM.GE.U.016

Group compare greater equal unsigned doublets

G.COM.GE.U.032

Group compare greater equal unsigned quadlets

G.COM.GE.U.064 ' Group compare greater equal unsigned octlets
G.COM.GE.U,128 Group compare greater equal unsigned hexlet
G.COM.L.008 Group compare signed less bytes
G.COM.L.016 Group compare signed less doublets
G.COM.L.032 Group compare signed less quadlets
G.COM.L.064 Group compars signed less octlets
G.COM.L.128 Group compare signed less hexlet
G.COM.L.U.008 Group compare less unsigned bytes
G.COM.L.U.016 Group compare lass unsigned doublets
G.COM.L.U.032 Group compare less unsigned quadlets
G.COM.L.U.064 Group compare less unsigned octlets
G.COM.L.U.128 Group compare less unsigned hexlet
G.COM.NE.008 Group compare not equal bytes
G.COM.NE.016 Group compare not equal doublets

FIG. 76A-1

U.S. Patent

Jan. 5, 2016

Sheet 384 of 509

G.COM.NE,032 ~ | Group compare not equal quadiets
G.COM.NE.064 Group compare not equal octlets
G.COM.NE.128 Group compare not equat hexlet

Equivalencies

US 9,229,713 B2

G.COM.E.Z.008 Group compare equal zero signed bytes
G.COM.E.Z.016 Group compare equal zero signed doublets
G.COM.E.Z.032 Group compare equal zero signed quadlets
G.COM.E.Z.064 Group compare equal zero signed octlets
G.COM.E.Z.128 Group compare equal zero signed hexlet
G.COM.G.008 Group compare signed greater bytes
G.COM.G.016 Group compare signed greater doublets
G.COM.G.032 Group compare signed greater quadiets
G.COM.G.064 Group compare signed greater octlets
G.COM.G.128 Group compare signed greater hexlet
G.COM.G.U.008 ‘Group compare greater unsigned bytes
G.COM.G.U.016 Group compare greater unsigned doublets
G.COM.G.U.032 Group compare greater unsigned quadlets
G.COM.G.U.064 Group compare greater unsigned octlets ’
G.COM.G.U.128 Group compare greater unsigned hexlet
G.COM.G.Z2.008 Group compare greater zero signed bytes '
G.COM.G.Z,016 Group compare greater zero signed doublets
G.COM.G.Z.032 Group compare greater zero signed quadlets
G.COM.G.Z.064 Group compare greater zero signed octlets
G.COM.G.Z2.128 Group compare greater zero signed hexlet
G.COM.GE.Z.008 Group compare greater equal zero signed bytes ’
G.COM.GE.Z.016 Group compare greater equal zero signed doublets
G.COM.GE.Z, 032 Group compare greater equal zero signed quadlets .
G.COM.GE.Z.064 Group compare greater equal zero signed octlets
G.COM.GE.Z.128 Group compare greater equal zero signed hexlet
G.COM.L.Z.008 Group compare less zero signed bytes
G.COM.L.Z2.016 Group compare less zero signed doublets
G.COM.L.Z.032 Group compare less zero signed quadlets
G.COM.L.Z.064 Group compare less zero signed octlets
G.COM.L.Z2.128 Group compare less zero signed hexlet
G.COM.LE.Q08 Group compare less equal signed bytes
G.COM.LE.016 Group compare less equal signed doublets
G.COM.LE.032

Group compare less equal signed quadlets

FIG, T6A-2

U.S. Patent

Jan. 5, 2016

Sheet 385 of 509

G.COM.LE.064 Group compare less equal signed octlets
G.COM.LE.128 Group compare less equal signed hexlet
G.COM.LE.U.008 Group compare less equal unsigned bytes

G.COM.LE.U.016

Group compare less equal unsigned doublets

G.COM.LE.U.032

Group compare less equal unsigned quadlets

G.COM.LE.U.064

Group compare less equal unsigned octlets

G.COM.LE.U.128

Group compare less equal unsigned hexlet

G.COM.LE.Z.008

Group compare less equal zero signed bytes

G.COM.LE.Z.016

Group compare less equal zero signed doublets

G.COM.LE.Z.032

Group compare less equal zero signed quadlets

G.COM.LE.Z.064

Group compare less equal zero signed octlets

G.COM.LE.Z.128

Group compare less equal zero signed hexlet

G.COM.NE.Z.008

Group compare not equal zero signed bytes

G.COM.NE.Z.016

Group compare not equal zero signed doublets

G.COM.NE.Z.032

Group compare not equal zero signed quadlets

G.COM.NE.Z.064

Group compare not equal zero signed octlets

G.COM.NE.Z.128

Group compare not equal zero signed hexlet

G.FIX

Group fixed point arithmetic exception

G.NOP

Group no operation

US 9,229,713 B2

G.COM.E.Z.size rc

« G.COM.AND.E.size rc,rc

G.COM.G.size rd,rc — G.COM.L.size rc,rd
G.COM.G.U.size rd,rc - G.COM.L.U.size rc,rd
G.COM.G.Zsize rc <= G.COM.L.U.size rc,rc
G.COM.GE.Z.size rc < G.COM.GE.sizercrc
G.COM.L.Z size rc < G.COM.L.sizere,rc
G.COM.LE size rd,rc — G.COM.GE.size rc,rd
G.COM.LE.U.size rd,rc - G.COM.GE.U.size rc,rd
G.COM.LE.Z.size rc < G.COM.GE.U.size rc,rc
G.COM.NE.Z.size rc « G.COM.AND.NE.size r¢,rc
G.FIX .« G.COM.E.128 10,10 '
G.NOR « G.COM.NE.128 r0,r0

Redundancies
G.COM.E.size rd,rd o GFIX
G.COM.NE size rd,rd < G.NOP

FIG. 76A-3

U.S. Patent Jan. 5,2016 Sheet 386 of 509 US 9,229,713 B2

Selection

class | operation |cond ~ |type size

boolean |[COM.AN |ENE 8 16 32 64 128

D COM

arithmetic | COM LGEGLE NONEU | 81632 64 128
' COM LGEGLEENE |Z 81632 64 128

Format

G.COM.op.slze rd,re
G.COM.opz.size red
gecomopslze(rd,rc)

31 24 23 18 17 12 11 6 5 0

{ G.size | rd | rc I op | GCOM |
8 6 6 6 T8 ’

FIG. 76A-4

U.S. Patent Jan. 5,2016 Sheet 387 of 509 US 9,229,713 B2

Definition

def GroupCompare(op.size.rd.re)
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
for i « O to 128-size by size

case op of
G.COM.E: .
Zissize-1..1 (Jisgize-1..i = Civsize-1.4)%'2¢
G.COM.NE:
Zitsize-1..i (di+size-1..i # Ci+size-1..)°2®
G.COM.AND.E:
Zi+size-1..i < ((Ci+size-1..i and dissize-1..) = 0)3728
G.COM.AND.NE:
Zissize-1..i ¢ ((Ci+size-1..i and dissize-1. i) # 0)5%8
G.COM.L:
Zissize-1..i ¢ ((rd = 1C) ? (Ci+size-1..i < 0) : (di+size-1..i < Ci+gize-1..0))5'%®
G.COM.GE:
Zitsize-1..i < ((rd = rc) ? (Cissize-1. 2 0) : (divgize.1..i 2 Cissize-1..i)528
G.COM.L.U:

Zi+size-1..i ¢ ((rd = rC) ? (Gi+size-1.i > 0) :
((0 Il d+size-1..) < (O]l Cissize-1..1)))5%®
G.COM.GE.U:
Zi+size-1..i + ({rd = rc) ? (Ci+gize-1.is 0):
((0 |} di+size-1..) 2 (O || Civsize-1.1)))5Z®
endcase
endfor
if (z= Q) then
raise FixedPointArithmetic
endif
enddef

F1G. 76B

U.S. Patent Jan. 5,2016 Sheet 388 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 76C

U.S. Patent

Jan. 5§, 2016

Sheet 389 of 509

Operation codes

G.COM.E.F.016 Group compare equal flpating-point half
G.COM.E.F.016.X Group compare equal floating-point half exact
G.COM.E.F.032 Group compare equal floating-paint single
G.COM.E.F.032.X Group compare equal floating-point single exact
G.COM.E.F.064 Group compare equal floating-point double
G.COM.E.F.064.X Group compare equal floating-point double exact
G.COM.E.F.128 Group compare equal floating-point quad

G.COM.E.F.128.X

Group compare equal floating-point quad exact

G.COM.GE.F.016

Group compare greater or equal floating-point half

G.COM.GE.F.016.X Group compare greater or equal floating-point half exact
G.COM.GE.F.032 Group compare greater or equal floating-point single
G.COM.GE.F.032.X Group compare greater or equal floating-point single exact
G.COM.GE.F.064 Group compare greater or equal floating-point double

G.COM.GE.F.064.X

Group compare greater or equal floating-point double exact

G.COM.GE.F.128

Group compare greater or equal floating-point quad

G.COM.GE.F.128.X

Group compare greater or equal floating-point quad exact

G.COM.L.F.016 Group compare lass floating-point half
G.COM.L.F.016.X Group compare less floating-point half exact
G.COM.L.F.032 Group compare less floating-point single
G.COM.L.F.032.X Group compare less floating-point single exact
G.COM.L..F.064 Group compare less floating-point double
G.COM.L.F.064.X Group compare less floating-point double exact
G.COM.L.F.128 Group compare less floating-point quad

G.COM.L.F.128.X

Group compare less floating-point quad exact

G.COM.LG.F.016

Group compare less or greater floating-paint half

G.COM.LG.F.016.X

Group compare less or greater floating-point half exact

G.COM.LG.F.032

Group compare less or greater floating-paint single

G.COM.LG.F.032.X

Group compare less or greater floating-point single exact

G.COM.LG.F.064

Group compare less or greater floating-point double

G.COM.LG.F.064.X

Group compare less or greater floating-point double exact

G.COM.LG.F.128

Group compare less or greater floating-point quad

G.COM.LG.F.128.X

Group compare less or greater floating-point quad exact

FIG. 7T7A-1

US 9,229,713 B2

U.S. Patent

US 9,229,713 B2

Jan. 5, 2016 Sheet 390 of 509
Equivaiencies
G.COM.G.F.016 éroup compare greater floating-point half

G.COM.G.F.016.X

Group compare greater floating-point half exact

G.COM.G.F.032

Group compare greater floating-point single

G.COM.G.F.032.X

Group compare greater floating-point single exact

G.COM.G.F.064 Group compare greater floating-point double
G.COM.G.F.064.X Group compare greater floating-point double exact
G.COM.G.F.128 Group compare greater floating-point quad
G.COM.G.F.128.X Group compare greater floating-point quad exact
G.COM.LE.F.016 Group compare less equal floating-point half
G.COM.LE.F.016.X Group compare less equal floating-point half exact
G.COM.LE.F.032 Group compare less equal floating-point single
G.COM.LE.F.032.X Group compare less equal floating-point single exact
G.COM.LE.F.064 Group compare less equal floating-point double
G.COM.LE.F.064.X Group compare less equal floating-point double exact

G.COM.LE.F.128

Group compare less equat floating-point quad

G.COM.LE.F.128.X

Group compare less equal floating-point quad exact

G.COM.G.F.prec rd,rc — G.COM,L.F.precrc,rd
G.COM.G.F.prec.X rd,rc - G.COM.L.F.prec.X rc,rd
G.COM.LE.F.prec rd,rc - G.COM.GE.F.precrc,rd
G.COM.LE.F.prec.X rd,rc - G.COM.GE.F.prec.X rc,rd
Selection
class |op cond type |prec round/trap
set COM_' ELGLGEGLE |F 16 32 64 128 NONE X
Format
G.COM.ep.prec.Fnd rd,ro
re=gecomapprecrnd(rd,re)
31 24238 1847 12 11 65 0
I G.prec | rd | rc | opsnd | GCOM |
-8 6 6 I] 6

FIG, T7A:2

U.S. Patent Jan. 5,2016 Sheet 391 of 509

Definition

def GroupCompareFloatingPoint(op,prec,round,rd,rc) as
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
fori « 0 to 128-prec by prec
di « F(prec,di+prec-1..1)
ci « F(prec,Ci+prec-1..i)
if round=NONE then
if (di.t = SNAN) or (ci.t = SNAN) then
raise FloatingPointArithmetic
endif
case op of
G.COM.L.F, G.COM.GE.F:

if (di.t = QNAN) or (ci.t = QNAN) then

raise FloatingPointArithmetic
endif
others: /inothing
endcase
endif
case op of
G.COM.L.F:
Zi « di?2ci
G.COM.GE.F:
Zi « dil?<ci
G.COM.E.F:
Zi « di=ci
G.COM.LG.F:
2i « dizci
endcase
Zi+prec-1..i + 2i
endfor
if (z # 0) then
raise FloatingPointArithmetic
endif
enddef

FIG.77B

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 392 of 509 US 9,229,713 B2

Exceptions

Floating-point arithmetic

FIG, 77C

U.S. Patent Jan. 5,2016 Sheet 393 of 509 US 9,229,713 B2

Operation codes

G.COPY.1.16 Group copy immaediate doublet
G.COPY.1.32 Group signed copy immediate quadiet
G.COPY.l1.64 Group signed copy immediate octlet
G.COPY.1.128 ‘ Group signed copy immediate hexlet
Equivalencies
G.COPY.1.8 Group copy immediate byte
G.SET Group set
G.ZERO Group zero
G.COPY.1.8 rd=(i% || i7..0) « G.COPY.116rd=(0 {]i7..0 1l i7..0)
G.SET rd « G.COPY.1.128 rd=-1
G.ZERO rd « G.COPY.1.128 rd=0
Redundancies
G.COPY .lLsize rd=-1 o GSETrd
G.COPY .l.size rd=0 < G.ZEROrd
Format
G.COPY.i.size rd=i
rd=gcopyisize(i)
31 2524 23 18 171615 0
| G.COPY.I |s| rd |'sz | imm |
7 1 6 2 16
S «— i15
imm « i15._o

sz « log(size)-4

FIG. 78A

U.S. Patent Jan. 5,2016 Sheet 394 of 509 US 9,229,713 B2

Definition

def GroupCopylmmediate(op,size,rd,imm) as

S « 0pg
case size of
16:
If s then
Reserved!nstruction
endif
Z « imm |} imm || imm || imm || imm |} imm [} imm |[imm
32:
z s | imm || s18 || imm|| s1€ || imm || s16 || imm
64:
z « s48 || imm || s48 || imm
128:
z«s12||imm
endcase
RegWrite(rd, 128, z)
enddef

FIG. 78B

U.S. Patent Jan. 5,2016 Sheet 395 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

FIG. 78C

U.S. Patent

Jan. 5, 2016 Sheet 396 of 509

Operation codes

US 9,229,713 B2

G.ADD.1.016 Group add immediate doublet

G.ADD.1.016.0 Group add immediate signed doublet check overflow
G.ADD.L.032 Group add immediate quadiet "
G.ADD.L1.032.0 Group add immediate signed quadlet check overflow
G.ADD.1.064 Group add immediate octlet '
G.ADD.1.064.0 Group add immediate signed octlet check overflow
G.ADD.I.128 Group add immediate hexlet ’ '
G.ADD.1.128.0 Group add immediate signed hexlet check overflow
G.ADD.1.U.016.0 Group add immediate unsigned doublet check overflow
G.ADD.I.U.032.0 Group add immediate unsigned quadiet check overflow
G.ADD.1.U.064.0 Group add immediate unsigned octlet check overflow
G.ADD.1.U.128.0 Group add immediate unsigned hexlet check overflow
G.AND.L.O16 Group and immediate doublet

G.AND.1.032 Group and immediate quadlet

G.AND.1.064 Group and immediate octlet

G.AND.|.128 Group and immediate hexlet

G.NAND.1,016 Group not and immediate doublel

G.NAND.).032 Group not and immediate quadiet

G.NAND.I.064 | Group not and immediate octiet

G.NAND.1.128 Group not and immediate hexlet

G.NOR.1.016 Group not or immediate doublet

G.NOR.1.032 Group not or immediate quadiet

G.NOR.1.064 Group not or immediate octlet

G.NOR.I.128 Group not or immediate hexiet

G.OR.1.016 Group or immediate doublet '

G.OR.1.032 Group or immediate quadiet

G.OR.1.064 Group or immediate ocllet

G.OR.1.128 Group or immediate hexlet

G.XOR..016 Group exclusive-or immediate doublet

G.XOR.I.032 | Group exclusive-or immediate quadiet

G.XOR.1.064 Group exclusive-or immediate octlet

G.XOR.1.128 Group exclusive-or immediate hexiet

FIG, 79A-1

U.S. Patent Jan. 5,2016 Sheet 397 of 509 US 9,229,713 B2

Equivalencies
G.ANDN.1.016 Group and not immediate doublet
G.ANDN.1.032 Group and not immediate quadlet
G.ANDN.1.064 Group and not immediate octlet
G.ANDN.1,128 Group and not immediate hexlet
G.COPY Group copy '
G.NOT Group not
G.ORN.1.018 Group or not immediate doublet
G.ORN.I.032 Group or not immediate quadlet
G.ORN..064 Group or not immediate octlet
G.ORN.i.128 Group or not immediate hexlet
G.XNOR.L.O16 Group exclusive-nor immediate doublet
G.XNOR.I1.032 Group exclusive-nor immediate quadlet
G.XNOR.I.064 Group exclusive-nor immediate octlet
G.XNOR.1.128 Group exclusive-nor immediate hexlet
G.ANDN.l.size rd=rc.imm — G.AND.l.size rd=rc,~imm
G.COPY rd=rc « G.OR.L.128 rd=rc,0
G.NOT rd=rc « G.NOR.1.128 rd=rg,0
G.ORN.l.size rd=rc.imm — G.OR.lsize rd=rc,~imm
G.XNOR.l.size rd=rc.imm — G.XOR.l.size rd=rc,~imm
Redundancies
G.ADD.l.size rd=rc,0 < G.COPYrd=rc
G.ADD.|.size.O rd=rc,0 < G.COPY rd=rc
G.ADD.l.U.size.O rd=rc,0 < G.COPY rd=rc
G.AND.l size rd=rc,0 < G.ZEROrd ' °
G.AND.|.size rd=rc,-1 < G.COPY rd=rc ' '
G.NAND.|.size rd=rc,0 < G.SETrd i
G.NAND.|.size rd=rc,-1 < G.NOT rd=rc
G.OR Lsize rd=rc,-1 <« G.SETrd
G.NOR.lsize rd=rc,-1 < G.ZEROrd
G.XOR.l.size rd=rc,0 & G.COPY rd=rc
G.XOR.l.size rd=rc,-1 < G.NOT rd=rc

FIG. 79A-2

U.S. Patent Jan. 5,2016 Sheet 398 of 509

Format

G.ep.size rd=re,imm

rd=gopsize(rc,imm)
31 24 23 18 17 12 11108

imm

| G.op | rd | re |sz|
')

8 6 6

8z « log(size)-4

FIG., 79A-8

10

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 399 of 509

Definition

def Grouplmmediate(op,size,rd,rc,imm) as
¢ « RegRead(rc, 128)
S « immg
case size of
16:
i16 « s7 || imm
b« i16]i16]|i16 ||i16 || 116 || 116 |16 |{i16

32:
b «s22 || imm || $22 || imm || $22 |} imm |} 522 || imm
64
b« s || imm || s54 || imm
128:
b« s118 || imm
endcase
case ap of
G.AND.I:
Z«candb
G.OR.I:
zecorb
G.NAND.I:
Z«cnandb
G.NOR.I:
zecnorb
G.XOR.I:
Z<+cXxorb
G.ADD.I;
for i « 0 to 128-size by size
Zi+size-1..i ¢ Ci+size-1..i + Di+size-1..i
endfor
G.ADD.LO:
for i «- 0 to 128-size by size
t « (Ci+size-1 |l Civsize-1..)) * (bivsize-1 || Di+size-1..0)
if tsize # tsize-1 then
raise FixedPointArithmetic
endif
Zjesize-1..| ¢ lsize-1..0
endfor
G.ADD.I.U.O:

for i «~ 0 to 128-size by size
te (01)] ciesize-1.i) + (01)] bissize-1..)
|f tsize * 0 then
raise FixedPointArithmetic

FIG. 79B-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 400 of 509 US 9,229,713 B2

endif
Zi+size-1..i < tsize-1..0
endfor
endcase.
RegWrite(rd, 128, z)
enddef

FIG. 79B-2

U.S. Patent Jan. 5,2016 Sheet 401 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 79C

U.S. Patent

Jan. 5, 2016

Sheet 402 of 509

Operation codes

G.SET.AND.E.I.016

Group set and equal zero immediate doublets

G.SET.AND.E.|.032

Group set and equal zero immediate quadlets

G.SET.AND.E.|.064

Group set and equal zero immediate octlets

G.SET.AND.E.I.128

Group set and equal zero immediate hexlet

G.SET.AND.NE.I.016

Group set and not equal zero immediate doublets

G.SET.AND.NE.I.032

Group set and not equal zero immediate quadlets

G.SET.AND.NE.|.064

Group set and not equal zero immediate octlets

G.SET.AND.NE.1.128

Group set and not equal zero immediate hexlet

G.SET.E.L.O16 Group set equal immediate doublets
G.SET.E.I.032 ‘Group set equal immediate quadlets
G.SET.E..O64 Group set equal immediate octlets

G.SET.E.I.128 Group set equal immediate hexlet
G.SET.GE.L.016 Group set greater equal immediate signed doublets
G.SET.GE..032 Group set greater equal immediate signed quadlets
G.SET.GE.|.064 Group set greater equal immediate signed octlets
G.SET.GE.|.128 Group set greater equal immediate signed hexlet

G SET.GE.L.U.016

Group set greater equal immediate unsigned doublets

G.SET.GE.|.U.032

Group set greater equal immediate unsigned quadlets

G.SET.GE.|.U.064

Group set greater equal immediate unsigned octlets

G.SET.GE.l.U.128

Group set greater equal immediate unsigned hexlet

G.SET.L.1.016 Group set signed less immediate doublets
G.SET.L.1.032 Group set signed less immediate quadlets
G.SET.L.1.064 Group set signed less immediate octlets

G.SET.L.1.128 Group set signed less immediate hexlet
G.SET.L.1.U.016 Group set less immediate signed doublets
G.SET.L.1.U.032 Group set less immediate signed quadlets
G.SET.L.1.U.064 Group set less immediate signed octlets
G.SET.L.L.U.128 Group set less immediate signed hexlet
G.SET.NE.L.O16 Group set not equal immediate doublets
G.SET.NE.1.032 Group set not equal immediate quadiets
G.SET.NE.|.0OB4 Group set not equal immediate ocllets

G.SET.NE.[,128 Group set not equal immediate hexlet

G.SUB...016 Group subtract immediate doublet

G.SUB.L016.0 Group subtract immediate signed doublet chaeck overflow
G.SUB.L.032 Group subtract immediate quadlet ' ‘
G.SUB.1.032.0 | Group subtract immediats signed quadiet check ovarflaw
G.SUB.L.064 Group subtract immediate octlet - '
G.SUB.L.064.0 ‘Group subtract immediate signed octlet check overflow

FIG. 8DA-1

US 9,229,713 B2

U.S. Patent

Jan. 5§, 2016

Sheet 403 of 509

US 9,229,713 B2

G.SUB.1.128 Group subtract immediate hexlet
G.SUB.I.128.0 Group subtract immediate signed hexiet check overflow
G.SUB.LU.016.0 Group subtract immediate unsigned doublet check overflow
G.SUB.1.U.032.0 Group subtract immediate unsigned quadlet check overflow
G.SUB.1.U.064.0 Group subtract immediate unsigned octlet check overflow
G.SUB.I.U.128.0 || Group subtract immediate unsigned hexlet check overflow
Equivalencies
G.NEG.016 Group negate doublet
G.NEG.016.0 Group negate signed doublet check overflow
G.NEG.032 Group negate quadlet '
G.NEG.032.0 Group negate signed quadlet check overflow
G.NEG.064 Group negate octlet
G.NEG.064.0 Group negate signed octlet check overflow
G.NEG.128 Group negate hexlet
G.NEG.128.0 Group negate signed hexlet check overflow
G.SET.LE.I.O16 Group set less equal immediate signed doublets
G.SET.LE.].032 Group set less equal immediate signed quadlets
G.SET.LE.].064 Group set less equal immediate signed octlets
G.SET.LE.1.128 Group set less equal immediate signed hexiet
G.SET.LE.L.U.016 Group set less equal immediate unsigned doublets
G.SET.LE.|.U.032 Group set less equal immediate unsigned quadiets
G.SET.LE.I.U.064 Group set less equal immediate unsigned octlets
G.SET.LE.|.U.128 Group set less equal immediate unsigned hexlet
G.SET.G.L.O16 Group set immediate signed greater doublets
‘G.SET.G.I.032 Group set immediate signed greater quadlets
G.SET.G.1.064 Group set immediate signed greater octlets
G.SET.G.1.128 Group set immediate signed greater hexlet
G.SET.G.1.U.016 Group set greater immediate unsigned doublets
G.SET.G.1.U.032 Group set greater immediate unsigned quadiets
G.SET.G.1.U.064 Group set greater immediate unsigned octlets
G.SET.G..U.128 Group set greater immediate unsigned hexlet
G.NEG.size rd=rc — G.SUB.l.size rd=0,rc .
G.NEG.size.Q rd=rc - G.8UB.l.size.O rd=0,rc
G.SET.G.l.size rd=imm,rc — G.SET.GE.l.size rd=imm-1,rc
G.SET.G.l.U.size rd=imm,rc — G.SET.GE.l.U.size rd=imm-1,rc
G.SET.LE.|l.size rd=imm,rc — G.SET.L.Lsize rd=imm-1,rc
G.SET.LE.l.U.size rd=imm,rc — - G.SET.L.l.U.size rd=imm-1,rc

FIG. 80A-2

U.S. Patent

Jan. 5, 2016 Sheet 404 of 509 US 9,229,713 B2
Redundancies
G.SET.AND.E.l.size rd=0,rc & G.SET.sizerd
G.SET.AND.NE |.size rd=0,rc o G.ZEROrd
G.SET.AND.E.|.size rd=-1,rc, « G.SET.E.Z.size rd=rc
G.SET.AND.NE.| size rd=-1,rc « G.SET.NE.Z. size rd=rc
G.SET.E.l.size rd=0,rc e G.SET.E.Zsize rd=rc
G.SET.L.l.size rd=-1,rc < G.SET.GE.Z.size rd=rc
G.SET.GE.l.size rd=-1,rc < G.SET.L.Z.size rd=rc
G.SET.NE.l.size rd=0,rc < G.SET.NE.Z size rd=rc
G.SET.GE.l.U.slize rd=0,rc & G.SET.E.Z.size rd=rc
G.SET.L.1.U.size rd=0,rc = G.SET.NE.Z.size rd=rc
Selection
class pperation | cond |form |operand | size check
arithmetic |SUB ' ') B 16 3264 128 |
NONEU 16 32 64 128 | O
boolean SET.AN |E | 16 32 64 128 .
D NE
SET ,
SET L GE |} NONEU 16 32 64 128
GLE
Format
G.op.gize rd=imm,re
rd=gopsize(imm,Fe)
31 2423 18 17 1211108 _ 0
| G.op | rd | re | sz] imm 1
8 6) 6 T2 10

8z « log(size)-4

Flan BGA'S

U.S. Patent Jan. 5,2016 Sheet 405 of 509 US 9,229,713 B2

Definition

def Group!immediateReversed(op,size,ra,imm) as
¢ < RegRead(re, 128)
S « Immg
case size of
16;
16 « s’ || imm
b« i16]]116] 116 ||i16]} i16 || i16 || 116 || 116
32:
b + 22 || imm |} 822 || imm |} $22 || imm {} $22 |{ imm
64:
b « s |} imm || s54 |} imm
128:
b« s118 |} imm
endcase
for i < 0 to 128-size by size
case op of
G.SUB.I:
Zi+gize-1. ¢ Ditsize-1..i - Citsize-1..i
G.SUB.I.O:
t « (bi+size-1 ll bivsize-1..i) - (Ci+size-1 || Ci+size-1..0)
if (tsize # tsize-1 then
raise FixedPointArithmetic
endif
Zirgize-1.1 < lsize-1.0
G.SUB.LLU.O:
te (01]| bitsize-1.i) - (01 || Civsize-1.)
if (tsize #® 0 then
raise FixedPointArithmetic
endif
Zitsize-1..i « lsize-1..0
G.SETE.L
Zjtgize-1.] ¢ (Di+size-1..i = Cirgize-1,.|
G.SET.NE.I:
Zj+size-1..i < (Ditsize-1..i # Cisize-1..
G.SET.AND.E.I: _
Zisgize-1..i ¢ ((Di+size-1.1 @nd Ciasize-1..1) = 0)328
G.SET.AND.NE.I:
Zissize-1.. & ((Di+size-1..1 and Cissize-1..)) # 0)54€
G.SET.L.I: '
Zjssize-1..i ¢ (Di+size-1..i < Citsize-1.i)52¢
G.SET.GE.I:

)slze

)size

FIG. 80B-1

U.S. Patent Jan. 5,2016 Sheet 406 of 509 US 9,229,713 B2

Zi+size-1..i < (Di+size-1..i 2 Citsize-1..i)528
G.SET.L.LU:
Zitsize-1..i = ((0 || bixsize-1..i) < (0]| Cissize-1..i))5%®
G.SET.GE.lL.U:
' Zitsize-1..i ((0 l| bissize-1..) 2 (0 || Cissize-1..))5128
endcase
endfor
RegWrite(rd, 128, z)
enddef

FIG. 80B-2

U.S. Patent Jan. 5,2016 Sheet 407 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic

FIG. 80C

U.S. Patent

Jan. 5§, 2016

Sheet 408 of 509

Operation codes

US 9,229,713 B2

G.AAA.008 Group add add add bytes

G.AAA.016 Group add add add doublets

G.AAA.032 Group add add add quadiets

G.AAA.064 | Group add add add octlets

G.AAA.128 Group add add add hexlet

G.ASA.008 _| Group add subtract add bytes

G.ASA.016 Group add subtract add doublets

(G.ASA.032 Group add subtract add quadlets _

G.ASA.064 Group add subtract add octlets

G.ASA.128 Group add subtract add hexlet -
»Equivalenci_es

G.AAS.008 Group add add subtract bytes

G.AAS.016 Group add add subtract doublets

G.AAS.032 Group add add subtract quadlets

G.AAS.064 Group add add subtract octlets

G.AAS.128 Group add add subtract hexlet

| G.AAS.size rd@rc,rb — G.ASA size rd@rb,rc

Redundancies

G.AAA size rd@rc,rc < G.SHL.ILADD.size rd=rd,rc,1

G.ASA.size rd@rc,rc < G.NOP ‘
Format

G.opsize rd@ra,rb
rd=gopel2a(rd,re.rb)
31 24 23 i8 17 12 11 6 6 0
] G.size | wd] rec | rb 1 |
8) 6 6 6 '

FIG. 81A

U.S. Patent Jan. 5,2016 Sheet 409 of 509 US 9,229,713 B2

Definition

def Grouplnptace(op,size,rd,rc,rtb) as
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
for i « O to 128-size by size

case op of
G.AAA:
Zjtsize-1..i ¢ * Oj+size-1..i + Ci+size-1.i + Di+size-1..i
G.ASA:
Zi+size-1..i < * Gj+size-1..i - Citsize-1..i + Di+size-1..
endcase
endfor
RegWrite(rd, 128, z)

enddef

FIG. 81B

U.S. Patent Jan. 5,2016 Sheet 410 of 509 US 9,229,713 B2

Exceptions

none

FIG, 81C

U.S. Patent

Jan. 5, 2016

Sheet 411 of 509

Operation codes

G.SET.E.F.016 Group set equal floating-point half
G.SET.E.F.016.X Group set equal floating-point half exact
G.SET.E.F.032 Group set equal floating-point single
G.SET.E.F.032.X Group set equal floating-point single exact
G.SET.E.F.064 Group set equal floating-point double
G.SET.E.F.064.X Group set equal floating-point double exact
G.SET.E.F.128 Group set equal floating-point quad

G.SET.E.F.128.X

Group set equal floating-point quad exact

G.SET.GEF.016.X

Group set greater equal floating-point half exact

G.SET.GE.F.032.X

Group set greater equal floating-point single exact

G.SET.GE F.064.X

Group set greater equal floating-point double exact

G.SET.GEF.128.X

Group set greater equal floating-point quad exact

G.SET.LG.F.016 Group set less greater floating-point half
G.SET.LG.F.016.X Group set less greater floating-point half exact
G.SET.LG.F.032 Group set less greater floating-paint single
G.SET.LG.F.032.X Group set less greater floating-point single exact

G.SET.LG.F.084

Group set less greater floating-point double

G.SET.LG.F.064.X

Group set less greater floating-point double exact

G.SET.LG.F.128

Group set less greater floating-point quad

G.SET.LG.F.128.X

Group set less greater floating-point quad exact

G.SET.L.F.016 Group set less floating-point half
G.SET.L.F.016.X Group set less floating-point half exact
G.SET.L.F.032 Group set less fioating-point single
G.SET.L.F.032.X Group set less floating-point single exact
G.SET.L.F.064 Group set Iess floating-point double
G.SET.L.F.064.X Group set Iess floating-point double exact
G.SET.L.F.128 Group set less floating-point quad
G.SET.L.F.12B.X Group set less floating-point quad exact
G.SET.GE.F.016 Group set greater equal floating-point half
G.SET.GE.F.032 Group set greater equal floating-point single
G.SET.GE.F.064 Group set greater equal floating-point double

G.SET.GE F.128

Group set greater equal floating-point quad

FIG. 82A-1

US 9,229,713 B2

U.S. Patent

Jan. 5§, 2016

Sheet 412 of 509

Equivalencies

G.SET.LEF.016.X Group set less equal floating-point half exact
G.SET.LE.F.032.X | Group set less equal floating-point single exact
G.SET.LEF.064.X Group set less equal floating-point double exact
G.SET.LE.F.128.X | Group set less equal floating-point quad exact
G.SET.G.F.016 Group set greater floating-point half
G.SET.G.F.016.X Group set greater floating-point half exact
G.SET.G.F.032 Group set greater floating-point single
G.SET.G.F.032.X Group set greater floating-point single exact
G.SET.G.F.064 Group set greater floating-point double
G.SET.G.F.064.X Group set greater floating-point double exact
G.SET.G.F.128 Group set greater floating-point quad
G.SET.G.F.128.X Group set greater floating-point quad exact
G.SET.LE.F.016 Group set less equal floating-point half
G.SET.LEF.032 Group set less equal floating-point single

G.SET.LE.F.064

Group set less equal floating-point double

G.SET.LEF.128

Group set less equal floating-point quad

G.SET.G.F.prec rd=rb,rc

G.SET.L.F.prec rd=rc,rb

G.SET.G.F.prec.X rd=rb,rc

G.SET.L.F.prec.X rd=rc,rb

G.SET.LE.F.prec rd=rb,rc

G.SET.LE.F.prec.X rd=rb,rc

—)

-y

- G.SET.GE.F.precrd=rc,rb
— G.SET.GE.F.prec.X rd=rc,rb

US 9,229,713 B2

Selection
class. . {op prec round/trap
set SET. , 16 32 64 128 |NonE X
E LG
L GE
G LE
Format

G.op.prec.rnd rd=rb,rc

rc=gopprecrnd(rb,ra)

31 24 23 18 17 12 11 65 0
| G.prec | rd | rc | rb |
8 6 6 6 6

FIG. 82A-2

U.S. Patent Jan. 5,2016 Sheet 413 of 509

Definition

def GroupFloatingPointReversed(op,prec,round,rd,re,rb) as
¢ < RegRead(rc, 128)
b « RegRead(rb, 128)
for i « O to 128-prec by prec
¢l « F(prec.Ci+prec-1..i)
bi « F(prec,bisprec.1..))
if round=NONE then
if (bi.t = SNAN) or (ci,t = SNAN) then
raise FloatingPointArithmetic
endif
case op of
G.SET.LF, G.SET.GE.F:
if (bi.t = QNAN) or (cl.t = QNAN) then
raise FloatingPointArithmetic

endif
others: //nothing
endcase
endif
case op of
G.SET.L.F:
zi « bi72ci
G.SET.GE.F:
Zi + bil?<ci
G.SET.E.F:
2i < bi=ci
G.SET.LG.F:
Zi + birci
endcase
Zivprec-1,.i ¢ i
endfor
RegWrite(rd, 128, z)

enddef

FIG. 82B

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 414 of 509 US 9,229,713 B2

Exceptions

Floating-point arithmetic

FiG. 82C

U.S. Patent Jan. 5,2016 Sheet 415 of 509 US 9,229,713 B2

Operation codes

G.SHL.I.ADD.008 Group shift left immediate add bytes

G.SHL.1L.ADD.016 Group shift left immediate add doublets

G.SHL.|. ADD.032 Group shift left immediate add quadlets

G.SHL.I.LADD.064 Group shift left immediate add octlets

G.SHL.1.LADD.128 Group shift left immediate add hexlet
Redundancies

| G.SHL.1.ADD. size rd=rd,rc,1 < G.AAA size rd@rc,rc |

Format

G.op.size rd=rc,rb,i

rd=gopsize(rc,rb,i)

31 24 23 1817 12 11 65 21 0
{ G.size] rd | rc [[csAuA0] 5h |
8 6 6 6 6 2
assert 1<i<4
sh « i-1

FIG. 83A

U.S. Patent Jan. 5,2016 Sheet 416 of 509 US 9,229,713 B2

Definition

def GroupShiftLeftimmediateAdd(sh,size.ra,b,re)
¢ « RegRead(re, 128)
b « RegRead(rb, 128)
for i «- 0 to 128-size by size
2j4sizp-1.i = Citsize-1..i * (Ditsize-1-an.i || 018N)
endfor
RegWrite(rd, 128, z)
enddef

FIG. 83B

U.S. Patent Jan. 5,2016 Sheet 417 of 509 US 9,229,713 B2

Exceptions

none

FIG. 83C

U.S. Patent Jan. 5,2016 Sheet 418 of 509 US 9,229,713 B2

Operation codes

G.SHL.I.SUB.008 Group shift left immediate subtract bytes
G.SHL.L.SUB.0186 Group shift left immediate subtract doublets
G.SHL.L.SUB.032 Group shift left immediate subtract quadiets
G.SHL...SUB.064 Group shift left immediate subtract octlets
G.SHL.1.SUB.128 Group shift left immediate subtract hexlet
Redundancies
| G.SHL.I.SUB.size rd=rc,1,rc < G.COPY rd=rc |
Format

G.op.size rd=rb,i,rc

rd=gopsize(rb,i,rc)

31 24 23 18 17 1211 65 21 0
| G.size] rd] rc | rb [esrusta] gh |
8 6 6 6 6 2
assert 1<i<4
sh « i-1

FIG. 84A

U.S. Patent Jan. 5,2016 Sheet 419 of 509 US 9,229,713 B2

Definition

def GroupShifil.eftimmediateSubtract(sh,size,ra,rb,rc)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
fori < Oto 12B-size by size
Ziesize-1.i ¢ (Divsize-1-sh.i [| 01*5P) - Cirgize-1.
endfor
RegWrite(rd, 128, z)
enddef

FIG. 84B

U.S. Patent Jan. 5,2016 Sheet 420 of 509 US 9,229,713 B2

Exceptions

none

FIG. 84C

U.S. Patent

Jan. 5, 2016

Sheet 421 of 509

Operation codes

G.SUB.H.008.C Group subtract halve signed bytes ceiling
G.SUB.H.008.F Group subtract halve signed bytes floor
G.SUB.H.008.N Group subtract halve signed bytes nearest
(G.SUB.H.008.2 Group subtract halve signed bytes zero
G.SuUB.H.016.C Group subtract halve signed doublets ceiling
G.SUB.H.016.F Group subtract halve signed doublets floor
G.SUB.H.016.N Group subtract halve signed doublets nearest
G.SUB.H.016.Z Group subtract haive signed doublets zero
G.SUB.H.032.C Group subtract haive signed quadiets ceiling
G.SUB.H.032.F Group subtract halve signed quadlets floor
G.SUB.H.032.N Group subtract halve signed quadlets nearest
G.SUB.H.032.Z | Group subtract halve signed quadiets zero
G.SUB.H.064.C Group subtract halve signed octlets ceiling
G.SUB.H.064.F Group subtract halve signed octlets floor
G.SUB.H.064.N Group subtract halve signed octlets nearest
G.SUB.H.064.Z Group subtract halve signed octlets zero
G.SUB.H.128.C Group subtract halve signed hexlet ceiling
G.SUB.H.128.F Group subtract halve signed hexlet floor
G.SUB.H.128.N Group subtract halve signed hexlet nearest
G.SUB.H.128.Z Group subtract halve signed hexlet zero

G.SUB.H.U.008.C .

Group subtract halve unsigned bytes ceiling

G.SUB.H.U.008.F

Group subtract halve unsigned bytes floor

G.SUB.H.U.008.N

Group subtract halve unsigned bytes nearest

G.SUB.H.U.008.Z

Group subtract halve unsigned bytes zero

G.SUB.H.U.016.C

Group subtract halve unsigned doubiets ceiling -

G.SUB.H.U.016.F

Group subtract halve unsigned doublets floor

G.SUB.H.U.016.N

Group subtract halve unsigned doublets nearest

G.SUB.H.U.016.Z

Group subtract halve unsigned doublets zero

G.SUB.H.U.032.C

Group subtract halve unsigned quadiets ceiling

G.SUB.H.U.032.F

Group subtract halve unsigned quadlets floor

G.SUB.H.U.032.N

Group subtract halve unsigned quadlets nearest

G.SUB.H.U.032.Z

Group subtract halve unsigned guadlets zero

G.SUB.H.U.064.C

Group subtract halve unsigned ocllets ceiling

G.SUB.H.U.064.F

Group subtract halve unsigned octlets floor

G.SUB.H.U.064.N

Group subtract halve unsigned octlets nearest

G.SUB.H.U.064.Z

Group subtract halve unsigned octlets zero

G.SUB.H.U.128.C

Group subtract halve unsigned hexlet ceiling

G.SUB.H.U.128.F

Group subtract halve unsigned hexlet floor

G.SUB.H.U.128.N

Group subtract halve unsigned hexlet nearest

G.SUB.H.U.128.Z

Group subtract halve unsigned hexlet zero

FIG. 85A-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 422 of 509 US 9,229,713 B2

Redundancios
G.8UB.H.size.rnd rd=rc,rc < G.ZEROrd
G.SUB.H.U.size.rnd rd=rc,rc o G.ZEROrd
Format

G.op.size.rdrd=rb,rc

rd=gepsizernd(rb,re)

31 v 24 23 18 17 i2 11 6 5 21 0
| G.size | rd] rc | rb | op [rnd|
8 6 <] 6 4 2

FIG, 88A-2

U.S. Patent Jan. 5,2016 Sheet 423 of 509 US 9,229,713 B2

Definition

def GroupSubtractHalve(op,rnd,size,rd,rc,rb)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
case op of
G.SUB.H.C, G.SUB.H.F, G.SUB.H.N, G.SUB.H.Z:
ZS ¢ CS «— b8 « 1
G.SUB.H.U.C, G.SUB.H.U.F, G.SUB.H.UN, G.SUBH.U.Z
Z5 « 1
CcS ¢« bs « 0
endcase
fori « 0 to 128-size by size
P « ((bs and bgjze.1) |l bsize-1+i..1) - ((cS and Csjze-1) |l Csize-1+i..4)
case rnd of
none, N:
$ « 05128 | py
Z:
s « (Qsize i Psize
F:
§ « Osize+1
C:
5 « 0size || 11
endcase
Vv < ((z8 & pgizelilp) + (Olls)
if vgize+1 = (28 & Vgizg) then
Zgize-1+i..i ¢ Vsize..1
glse
Zsize-1+i.i ¢ 28 7 (Vsize+1 || ~VE[ZE7Y) : 15128
endlf
endfor
RegWrite(rd, 128, z)
enddef

FIG, 85B

U.S. Patent Jan. 5,2016 Sheet 424 of 509 US 9,229,713 B2

Exceptions

none

FIG. 85C

U.S. Patent Jan. 5,2016 Sheet 425 of 509 US 9,229,713 B2

Operation codes

[G.MUX | Group multiplex]

Redundancies

G.MUX ra=rd,rc,rc

< G.COPY ra=rc
G.MUX ra=ra,rc,rb < G.BOOLEAN ra@rc,rb,0x11001010
G.MUX ra=rd,ra,rb < G.BOOLEAN ra@rd,rb,0x11100010
G.MUX ra=rd,rc,ra < G.BOOLEAN ra@rd,rc,0x11011000
G.MUX ra=rd,rd,rb < G.ORra=rd,rb
G.MUX ra=rd,rc,rd < G.AND ra=rd,rc
Format
G.MUX ra=rd,rc,rb
ra=gmux{(rd,rc,rb)
31 24 23 _ 18 17 12 11 65 0
| G.MUX | rd] rc | rb | ra |
8 6 6 6 6

FIG. 86A

U.S. Patent Jan. 5,2016 Sheet 426 of 509 US 9,229,713 B2

Definition

def GroupTernary(op,size,rd,rc.rb,ra) as
d « RegRead(rd, 128)
¢ «+ RegRead(re, 128)
b « RegRead(rb, 128)
case op of
G.MUX:
z « (c and d) or (b and not d)
endcase
RegWrite(ra, 128, 2)
enddef

FIG. 86B

U.S. Patent Jan. 5,2016 Sheet 427 of 509 US 9,229,713 B2

Exceptions

none

FIG. 86C

U.S. Patent

Jan. 5, 2016

Sheet 428 of 509

QOperation codes

US 9,229,713 B2

X.DEPOSIT.002

Crossbar deposit signed pecks

X.DEPOSIT.004

Crossbar deposit signed nibbles

X.DEPOSIT.008

Crossbar deposit signed bytes

X.DEPOSIT.016 Crossbar deposit signed doublets
X.DEPOSIT.032 Crossbar deposit signed quadiets
X.DEPOSIT.064 Crossbar deposit signed octlets
X.DEPOSIT.128 Crossbar deposit signed hexlet
X.DEPOSIT.U.002 Crossbar deposit unsigned pecks

X.DEPOSIT.U.004

Crossbar deposit unsigned nibbles

X.DEPOSIT.U.008

Crossbar deposit unsigned bytes

X.DEPQOSIT.U.016

Crossbar deposit unsigned doublets

X.DEPOSIT.U.032

Crossbar deposit unsigned quadlets

X.DEPOSIT.U.064

Crossbar deposit unsigned octlets

X.DEPOSIT.U.128

Crossbar deposit unsigned hexlet

X.WITHDRAW.U.002

Crossbar withdraw unsigned pecks

XWITHDRAW.U.004 | Crossbar withdraw unsigned nibbles
X.WITHDRAW.U.008 | Crossbar withdraw unsigned bytes
X.WITHDRAW.U.016 | Crossbar withdraw unsigned doublets
X.WITHDRAW.U.032 | Crossbar withdraw unsigned quadlets
X.WITHDRAW.U.064 | Crossbar withdraw unsigned octlets
X.WITHDRAW.U.128 | Crossbar withdraw unsigned hexlet
X.WITHDRAW.002 Crossbar withdraw pecks
X.WITHDRAW.004 Crossbar withdraw nibbles
X.WITHDRAW.008 | Crossbar withdraw bytes
X.WITHDRAW.016 Crossbar withdraw doublets
X.WITHDRAW.032 Crossbar withdraw quadlets
X.WITHDRAW.064 Crossbar withdraw octlets

X WITHDRAW.128

Crossbar withdraw hexlet

FIG. B7A-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 429 of 509
Equivalencies

X.SEX.1.002 Crossbar extend immediate signed pecks
X.SEX.1.004 Crossbar extend immediate signed nibbles
X.SEX.1.008 Crossbar extend immediate signed bytes
X.SEX.1.016 Crossbar extend immediate signed doublets
X.SEX.1.032 Crossbar extend immediate signed quadlets
X.SEX.1.064 Crossbar extend immediate signed octlets
X.SEX.1.128 Crossbar extend immediate signed hexlet
X.ZEX.1.002 Crossbar extend immediate unsigned pecks
X.ZEX.1.004 Crossbar extend immediate unsigned nibbles
X.ZEX.1.008 Crossbar extend immediate unsigned bytes
X.ZEX.1.016 Crossbar extend immediate unsigned doublets
X.ZEX.1.032 Crossbar extend immediate unsigned quadlets
X.ZEX.1.064 Crossbar extend immediate unsigned octlets
X.ZEX.1.128 Crossbar extend immediate unsigned hexlet

X.SEX.l.gsize rd=rc,i — X.DEPOSIT.gsize rd=rc,i,0
X.ZEX.l.gsize rd=rc,i — X.DEPQOSIT.U.gsize rd=rc,i,0
Redundancies
X.DEPOSIT.gsize rd=rc,gsize,0 < X.COPY rd=rc
X.DEPOSIT gsize rd=rc,gsize-ii <« X.SHL.|.gsize rd=rc,i
X.DEPQOSIT.U.gsize rd=rc,gsize,0 <> X.COPY rd=rc
X.DEPOSIT.U.gsize rd=rc,gsize-i,i < X.SHL.l.gsize rd=rc,i
X.WITHDRAW.gsize rd=rc,gsize,0 <« X.COPY rd=rc
X.WITHDRAW gsize rd=rc,gsize- <« X.SHR.|.gsize rd=rc,i
i,
X.WITHDRAW.U gsize rd=rc,gsize,0 <« X.COPY rd=rc
X.WITHDRAW,U gsize rd=rc,gsize-ii « X.SHR..U.gslze rd=rc,i
Format
X.op.gsize rd=re,isize,ishift
rd=xopgsize(re,isize,ishift)
31 28252423 18 17 12 11 65 0
| Xop J|ih] rd rc | gstp | gsfs
6 2 6 6 6 6

FIG. 87A-2

U.S. Patent Jan. 5,2016 Sheet 430 of 509 US 9,229,713 B2

assert isize+ishift < gsize
assert isize>1

iho || gsfs « 128-gsize+isize-1
ih || gsfp < 128-gsize+ishift

FIG. 87A-3

U.S. Patent Jan. 5,2016 Sheet 431 of 509 US 9,229,713 B2

127 ' 8
16
32
64
fsize [shift
ih,| | gsfp
128
0
0 iho| | gsfs 127

encoding for crossbar field

FIG. 87B

U.S. Patent

Jan. 5, 2016 Sheet 432 of 509 US 9,229,713 B2

A {RIZQ e

re

gsize

e 0 rd

<— fgize ~——a— dpos —

crossbar deposit

FIG. 87C

U.S. Patent Jan. 5,2016 Sheet 433 of 509 US 9,229,713 B2

-< fsize >t spos
rc
gsize
- -
(3 c rd
- fsize .
crossbar withdraw

FIG. 87D

U.S. Patent Jan. 5,2016 Sheet 434 of 509 US 9,229,713 B2

Definition

def CrossbarField(op,rd,rc,gsfp.gsfs) as
¢ < RegRead(rc, 128)
case ((op1 || gsfp) and (opg || gsfs)) of
0..63:
gsize « 128
64..95:
gsize « 64
98..114:
gsize « 32
112..119:
gsize « 16
120,.123:
gsize « 8
124..125:
gsize « 4
126;
gsize « 2
127:
raise Reservedinstruction gsize « 1
endcase
ishift « (op1 || gsfp) and (gsize-1)
isize « ((opg || gsfs) and (gsize-1))+1
if (ishift+isize>gsize)
raise Reservedinstruction

endif
for i <~ O to 128-gsize by gsize
case op of
X.DEPOSIT:
Zi+gsize-1.J cRSEesjzerishift || ¢y icize.q. |] OISRt
X.DEPOSIT.U:
Zjrgsize-1,.j < Oize-isize-ishift y ¢ 0o o 1] OISHIR
X.WITHDRAW:
Zisgsize-1..i ¢ CHIEHSERnitt-1 Il Ciaisize+ishift-1. i+ishif
X.WITHDRAW.U:
Zivgsize-1..| ¢ 0981288 || iyigizyighin1. ivighit
endcase
endfor
RegWrite(rd, 128, z)
enddef

FIG. 87E

U.S. Patent Jan. 5,2016 Sheet 435 of 509 US 9,229,713 B2

Exceptions

Reserved instruction

FIG, 87F

assert isize+ishift < gsize
assert isize>1

ihg || gsfs « 128-gsize+isize-1
ih1 || gsfp « 128-gsize+ishift

FIG. 88A

U.S. Patent Jan. 5,2016 Sheet 436 of 509 US 9,229,713 B2

Operation codes

X.DEPOSIT.M.002 Crossbar deposit merge pecks

X.DEPOSIT.M.004 Crossbar deposit merge nibbles

X.DEPOSIT.M.008 Crossbar deposit merge bytes

X.DEPOSIT.M.016 Crossbar deposit merge doubiets

X.DEPOSIT.M.032 Crossbar deposit merge quadlets

X.DEPQSIT.M.064 Crossbar deposit merge octlets

X.DEPOSIT.M.128 Crossbar deposit merge hexlet
Equivalencies

[X. DEPOSIT.M.001 | Crossbar deposit merge bits |
[X.DEPOSIT.M.1 rd@rc,1,0 — X.COPY rd=rc |

Redundancies

X.DEPQSIT.M.gsize & X.COPY rd=rc

rd@re,gsize,0
Format

X.op.gsize rd@rc,isize,ishift
rd=xopgsize(rd,rc,isize,ishift)
31 26252423 1817 12 11 65 0
| Xop |ih] rd | rc | gsfp | gsfs |
6 2 6 6 6 6

U.S. Patent Jan. 5,2016 Sheet 437 of 509 US 9,229,713 B2

127 8
16
32
64
' fsize “shift
ih4] | gsfp
128
0
0 127

ihol | gsfs

encoding for crossbar field

FIG. 88B

U.S. Patent

Jan. 5, 2016 Sheet 438 of 509 US 9,229,713 B2

€rossbar Fleld Inplace

Tremrrerm (G 2@ woomeripe:

rc

/

d c d rd

o {GiZ@ Pt~ pOS ——

crosshar deposit

FIG. 88C

U.S. Patent Jan. 5,2016 Sheet 439 of 509 US 9,229,713 B2

Definition

def CrossbarFieldInplace(op,rd,rc,gsfp,gsfs) as
¢ « RegRead(rc, 128)
d « RegRead(rd, 128)
case ((op1 || gsfp) and (opo || gsfs)) of
0..63:
gsize « 128
64..95:
gsize « 64
96..111:
gsize « 32
112..119:
gsize < 16
120..123:
gsize « 8
124..125;
gsize « 4
126:
gsize « 2
127:
raise Reservedinstruction gsize « 1
endcase
ishift «- (op1 || gsfp) and (gsize-1)
isize « ((opg || gsfs) and (gsize-1))+1
if (ishift+isize>gsize)
raise ReservedInstruction
endif
fori ¢« 0 to 128-gsize by gsize
Zj+gsize-1..i < isgsize-1. i+isize+ishift Il Citisize-1..i || divishift-1..i
endfor
RegWrite(rd, 128, z)
enddef

FIG. 88D

U.S. Patent Jan. 5,2016 Sheet 440 of 509 US 9,229,713 B2

Execptions

Reserved instruction

FIG. 88E

U.S. Patent

Jan. 5, 2016 Sheet 441 of 509 US 9,229,713 B2

Operation codes

X.SHL.M.002 Crossbar shift left merge pecks

X.8HL.M.004 Crossbar shift left merge nibbles

X.SHL.M.008 Crossbar shift left merge bytes

X.SHL.M.016 Crossbar shift left merge doublets

X.SHL.M.032 Crossbar shift left merge quadiets

X.SHL.M.064 Crossbar shift left merge octlets

X.SHL..M.128 Crossbar shift left merge hexlet

X.SHR.M.002 Crossbar shift right merge pecks

X.SHR.M.004 Crossbar shift right merge nibbles

X.SHR.M.008 Crossbar shift right merge bytes

X.SHR.M.016 Crossbar shift right merge doublets

X.SHR.M.032 Crossbar shift right merge quadlets

X.SHR.M.064 | Crossbar shift right merge octlets

X.SHR.M.128 Crossbar shift right merge hexlet
Redundancies

{ X.SHR.M.size rd@rd,rb < X.ROTR.size rd=rd,rb]
Format
X.op.size rd@rc,rb
rd=xopsize(rd,re,rb)
31 252423 18 17 _d2 1 65 21 0
| XSHIFT |s]| rd | rc | b | op sz}
7 1 6 6 6 4 2

Isize « log(size)
S « Isizes

Sz « Isizeq o

FIG. 89A

U.S. Patent Jan. 5,2016 Sheet 442 of 509 US 9,229,713 B2

Definition

def Crossbarlnplace(op,size,rd,rc,rb) as
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
shift « b and (size-1)
fori « 0 to 128-size by size

case op of
X.SHR.M:
Zitgize-1.. € Ci+shift-1..i I] di+size-1. i+shift
X.SHL.M:
Zirsize-1..i — Ji+size-1-shift..i | Ci+shift-1..i
endfor
RegWrite(rd, 128, z)
enddef

FIG. 89B

U.S. Patent Jan. 5,2016 Sheet 443 of 509 US 9,229,713 B2

Exceptions

none

FIG, 89C

U.S. Patent Jan. 5,2016 Sheet 444 of 509 US 9,229,713 B2

Operation codes

X.COMPRESS.1.002

Crossbar compress immediate signed pecks

X.COMPRESS.1.004

'Crossbar compress immediate signed nibbles

X.COMPRESS.|.008

Crossbar comprsess immediate sign'ed’ bytes

X.COMPRESS.1.016

Crassbar compress immediate signed doublets

X.COMPRESS.|.032

Crossbar compress immediate signed quadlets

X.COMPRESS.|.064

Crossbar compress immediate signed octlets

X.COMPRESS.[.128

Crossbar compress immediate signed hexlet

X.COMPRESS.|.1.002

Crossbar compress immediate unsigned pecks

X.COMPRESS.|.U.004

Crossbar compress immediate unsigned nibbles

X.COMPRESS.|.U.008

Crossbar compress immediate unsigned bytes

X.COMPRESS.|1.U.016

Crossbar compress immediate unsigned doublets

X.COMPRESS.|.U.032

Crossbar compress immediate unsigned quadlets

X.COMPRESS.|.U.064

Crossbar compress immediate unsigned octlets

X.COMPRESS.I.U.128

Crossbar compress immediate unsigned hexlet

X.EXPAND.1.002

Crossbar expand immediate signed pecks

X.EXPAND.|.004

Crossbar expand immediate signed nibbles

X.EXPAND.I.008

Crossbar expand immediate signed bytes

X.EXPAND.I.016

Crossbar expand immediate signed doublets

X.EXPAND.I.032

Crossbar expand immediate signed quadlets

X.EXPAND.1.064

Crossbar expand immediate signed octlets

X.EXPAND.I.128

Crossbar expand immediate signed hexlet

X.EXPAND.|.U.002

Crossbar expand immediate unsigned pecks

X.EXPAND.I.U.004

Crossbar expand immediate unsigned nibbles

X.EXPAND.I.U.008

Crossbar expand immediate unsigned bytes

X.EXPAND.I.U.016

Crossbar expand immediate unsigned doublets

X.EXPAND.I.U.032

Crossbar expand immediate unsigned quadiets

X.EXPAND.|.U.064

Crossbar expand immediate unsigned octlets

X.EXPAND.|.U.128

Crossbar expand immediate unsigned hexlet _

X.ROTL.1.002 Crossbar rotate left immediate pecks
X.ROTL..004 Crossbar rotate left immediate nibbles
X.ROTL.I.OO_S Crossbar rotate left immediate bytes
X.ROTL.1.016 Crossbar rotate left immediate doublets
X.ROTL.1.032 Crossbar rotate left immediate quadists
X.ROTL.1.064 Crossbar rotate left immediate octlets
X.ROTL...128 Crossbar rotate left immediate hexlet
X.ROTR.1.002 Crossbar rotate right immediate pecks
X.ROTR.1.004 Crossbar rotate right immediate nibbles
X.ROTR...00O8 Crossbar rotate right immediate bytes
X.ROTR.L.O16 Crossbar rotate right immediate doublets
X.ROTR.I.032 Crossbar rotate right immediate quadiets

FIQ, 80A-1

U.S. Patent

Jan. 5§, 2016

Sheet 445 of 509

X.ROTR.1.064 Crossbar rotate right immediate octlets

X.ROTR.1.128 Crossbar rotate right immediate hexlet

X.SHL1.002 Crossbar shift left immediate pecks

X.SHL.1.002.0 Crossbar shift left immediats signed pecks check overflow
X.SHL.1.004 Crossbar shift left immediats nibbles

X.SHL.1.004.©O Crossbar shift teft immediate signed nibbles check overflow
X.SHL.1.008 Crossbar shift left immediate byles

X.SHL.L.008.0 Crassbar shift left immediate signed bytes check overﬂow
X.SHL.|.016 Crossbar shift left immediate doublets

X.SHL...016.0 Crossbar shift left immediate signed doublets check overﬂow
X.SHL.1.032 Crossbar shift left immediate quadlets

X.SHL.1.032.0 Crossbar shift ieft immediate signed quadlets check overﬂow
X.SHL.1.064 Crossbar shift left immediate octlets

X.SHL.1.064.0 Crossbar shift left immediate signed octlets check overflow
X.SHL.l.128 Crossbar shift left immediate hexlet

X.SHL.1.128.0 Crossbar shift left immediate signed hexlet check overflow
X.SHL.1,U.002.0 Crossbar shift left immediate unsigned pecks check overflow
X.SHL.1.U.004.0 Crossbar shift left immediate unsigned nibbles check overflow
X.SHL.1.U.008.0 Crossbar shift left immediate unsigned bytes check overflow
X.SHL.I.U.0186.0 Crossbar shift ieft immediate unsigned doublets check overflow
X.SHL.1.U.032.0 Crossbar shift left immediate unsigned quadlets check overflow
X.SHL.1.U.064.0 Crossbar shift left immediate unsigned octlets check overflow
X.SHL..1.U.128.0 Crossbar shift left immediate unsigned hexlet check overflow
X.SHR.1.002 Crosshbar signed shift right immediate pecks

X.SHR.1.004 Crossbar signed shift right immediate nibbles

X.SHR.1.008 Crossbar signed shift right immediate bytes

X.SHR.I.016 Crossbar signed shift right immediate doublets
X.SHR.1.032 Crossbar signed shift right immediate quadlets
X.SHR.1.064 Crossbar signed shift right immediate octlets

X.SHR.I.128 Crossbar signed shift right immediate hexlet
X.SHR.I.U.002 Crossbar shift right immediate unsigned pecks
X.SHR.1.U.004 Crossbar shift right immediate unsigned nibbles
X.SHR.|.U.008 Crossbar shift right immediate unsigned bytes
X.SHR.I.LU.016 Crossbar shift right immediate unsigned doublets
X.SHR.1.U.032 Crossbar shift right immediate unsigned quadlets
X.SHR.1.U.064 Crossbar shift right immediate unsigned octlets
X.SHR.1.U.128 Crossbar shift right immediate unsigned hexlet

FIG. 90A-2

US 9,229,713 B2

U.S. Patent

Jan. 5§, 2016

Equijvalencles

Sheet 446 of 509

US 9,229,713 B2

X.COPY Crossbar copy
X.NOP Crossbar no operation
X.COPY rd=rc « X, ROTL.).128 rd=rc,0
X.NOP « X.COPY r0=r0
Redundancies
X.ROTL.l.gsize rd=rc,0 « X.COPYrd=rc¢
X.ROTR.l.gsize rd=rc,0 < X.COPY rd=rc
X.ROTR.l.gsize rd=rc,shift < X.ROTL.lgsize rd=rc,gsize-shift
X.SHL.I.gsize rd=rc,0 < X.COPY rd=r¢ '
X.SHL.1.gsize.O rd=rc,0 < X.COPY rd=rc
X.SHL.I.U.gsize.O rd=rc,0 « X.COPY rd=rc
X.SHR.l.gsize rd=rc,0 < X.COPYrd=rc
X.SHR.1.U.gsize rd=rc,0 < X.COPY rd=rc
Selection
class op size
precision COMPRESS. 24816 32 64 128
COMPRESS.LU EXPAND.I
_ EXPAND.L.U |
shift ROTL. ROTR.I 24816 32 64 128
SHL.I SHL.L.O
SHL.LU.O
| SHR) _ SHR.U
copy .| COPY

FIG. 90A-3

U.S. Patent Jan. 5,2016 Sheet 447 of 509 US 9,229,713 B2

Format
X.op.size rd=re,shift

rd=xopsize(re,shift)

31 24 23 18 17 12 11 6 4 21 0
[XSHIFTI | rd 1 rc | simm | op |szl
8 6 6 ' 6 4 2

t « 256-2*size+shift
sz« 11 5
simm <« t5.0

FIG. 90A-4

U.S. Patent Jan. 5,2016 Sheet 448 of 509

Definition

def CrossbarShortimmediate(op,rd,rc,simm)
case (op1..0 |} simm) of
0..127:
size « 128
128..191:
size « 64
192..223:
size « 32
224..239:
size « 16
240..247:
size « 8
248..251:
size < 4
252..253:
size « 2
254..255:
raise Reservedinstruction
endcase
shift «- (opg || simm) and (size-1)
¢ « RegRead(rc, 128)
case (ops_ 2 || 02) of
X.COMPRESS.I:
hsize « size/2
for i « O to 64-hsize by hsize
if shift < hsize then
Zi+hsize-1..i € Ci+i+shiftthsize-1..i+i+shift
else
Zishsize-1.i ¢ CEFENRZP || Civissize-1. ivieshift
endif
endfor
z127.64 <0
X.COMPRESS.I.U:
hsize « size/2
for i «- 0 to 64-hsize by hsize
if shift < hsize then
Zi+hsize-1..i € Ci+i+shift+hsize-1..i+i+shift
else
Zishsize-1.j « OSMINSIZE |1 ¢iiygize 1 jvivshif
endif
endfor
Z127.64 <0
X.EXPAND.I:

FIG. 90B-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 449 of 509 US 9,229,713 B2

hsize « size/2
for i &~ 0 to B4-hsize by hsize
if shift < hsize then
2i+iesize-1..i+i — CIESENM 1| Ciangize 1., 1] 05N
else
Zisi+size-1..i+i < Cissize-shift-1..i |l
endif
endfor
X.EXPAND.L.U:
hsize « size/2
for i «— 0 to 64-hsize by hsize
if shift < hsize then
Zi+i+size-1..i+i ¢ QhSlZQ-Shlﬁ I Ci+hsize-1..i Il oshift
alse

Zj+jesize-1, 1+ + Cirgize-shift-1.i Il oshift
endif
endfor
X.SHL.I:
fori « O to 128-size by size
Zi+gize-1..i ¢~ Ci+size-1-shift..ill O
endfor
X.SHL.L.O:
fori « 0 to 128-size by size

if Cisgize-1. i+size-1-shift # CEIUILL! 4 chigt then
raise FixedPointArithmstic
endif
Zissize-1.. ¢ Ciesize-1-shift. I} 090t
endfor
X.SHL.LU.O;
fori « 0 to 128-size by size
if Ci+sizo-1..i+slze-shift # 03hift then
ralse FixedPointArithmetic
endif
Zj+gize-1..i € Ci+size-1-shift.
endfor
X.ROTR.I:
fori « 0to 128-size by size
Zj+gize-1..i & Ci+shift-1,.i || Ciesize-1..i+shift
endfor
X.SHR.I:
fori « 0 to 128-size by size
Zitsize-1..i ¢ C?bsfpzm Il Ci+size-1..i+shift
endfor
X.SHR.l.U:
fori « 0to 128-size by size
Zissize-1..1 & O5PR || Ciyciza 1. iushin
endfor

gshift

shift

il oshit

FiG. 90B-2

U.S. Patent Jan. 5,2016 Sheet 450 of 509 US 9,229,713 B2

endegse
RegWrite(rd, 128, 8)
enddaf

FIG, 9083

U.S. Patent Jan. 5,2016 Sheet 451 of 509 US 9,229,713 B2

Exceptions

Fixed-point arithmetic
Reserved Instruction

FIG. 90C

U.S. Patent Jan. 5,2016 Sheet 452 of 509 US 9,229,713 B2

QOperation codes

X.SHL.M.1.002 Crossbar shift left merge immediate pecks
X.SHL.M.1.004 Crossbar shift left merge immediate nibbles
X.SHL.M.1.008 Crossbar shift left merge immediate bytes
X.SHL.M.1.016 _Crossbar shift left merge immediate doublets
X.SHL.M.1.032 Crossbar shift left merge immediate quadlets
X.SHL.M.1.064 Crossbar shift left merge immediate octlets
X.SHL.M.1.128 Crossbar shift left merge immediate hexlet
X.SHR.M.1.002 Crossbar shift right merge immediate pecks
X.SHR.M.1.004 Crossbar shift right merge immediate nibbles
X.SHR.M.1.008 Crossbar shift right merge immediate bytes
X.SHR.M.1.016 Crossbar shift right merge immediate doublets
X.SHR.M.1.032 Crossbar shift right merge immediate quadlets
X.SHR.M.I1.064 Crossbar shift right merge immediate octlets
X.SHR.M.1.128 Crossbar shift right merge immediate hexlet
Format
X.op.size rd@re,shift
rd=xopsize(rd,rc,shift)
31 24 23 18 17 12 11 6 4 21 O
I XSHIFTI | d [re | simm | op [sz}
8 6 6 6 4 2

t ¢+~ 286-2*size+shift

sZ e« 7.8

simm ¢ i5.0

FIG. 91A

U.S. Patent

Jan. 5, 2016 Sheet 453 of 509

Definition

def CrossbarShortimmediatelnplace(op,rd,re,simm)
case (op4._.¢0 || simm) of
0..127:

128..
192..
224..
240..
248..
252..

254..

endcase

size « 128
191:

size « 64
223:

size « 32
239:

size « 16
247

size « 8
251:

slze « 4
253:

size « 2
255:

raise Reservedinstruction

shift « (opg |} simm) and (size-1)
¢ « RegRead(rc, 128)
d « RegRead(rd, 128)
for i « 0 to 128-size by size
case (0ps. 2 || 0?) of

X.SHR.M.I:

Zisgize-1..i + Citshift-1..i (| di+size-1..i+shift
X.SHL.M.I:

Zissize-1..i ¢ Jirsize-1-shift..i || Ci+shift-1..i

endcase

endfor

RegWrite(rd, 128, z)

enddef

FIG. 918

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 454 of 509 US 9,229,713 B2

Exceptions

Reserved Instruction

FIG. 91C

U.S. Patent Jan. 5,2016 Sheet 455 of 509 US 9,229,713 B2

Operation codes

[X.SWiZZLE | Crossbar swizzle 1

Format

X.SWIZZLE rd=rc,icopy,iswap

rd=xswizzle(rc,icopy,iswap)

31 26 2524 23 18 17 12 11 65 0
| X.SWIZZLE | ih | rd | rc | icopya | iswapa |
3] 2 B 6 6 6

icopya <« icopys. o
iswapa « iswaps_o
ih « icopys || iswapg

FIG. 92A

U.S. Patent Jan. 5,2016 Sheet 456 of 509 US 9,229,713 B2

Definition

def GroupSwizzielmmaediate(ih,rd.rc,lcopya, iswapa) as
icopy « ihq || lcopya
iswap < Ihg | iswapa
¢ « RagRead(rc,.128)
forie- 0t0 127
i ¢ €(] & Isopy) » iswap
endfor
RegWrite(rd, 128, 2)
anddel

FIG, 928

U.S. Patent Jan. 5,2016 Sheet 457 of 509 US 9,229,713 B2

Exceptions

none

FIG. 92C

U.S. Patent Jan. 5,2016 Sheet 458 of 509 US 9,229,713 B2

Operation codes

[X.SELECT.8 [Crossbar select bytes 1

Format

X.SELECT.8 ra=rd,rc,rb

ra=xselect8(rd,rc,rb)
31 24 23 18 17 12 14 6 5 0
| op f rd | rc | b | ra |
8 6 6 6 6

FIG. 93A

U.S. Patent Jan. 5,2016 Sheet 459 of 509 US 9,229,713 B2

rd
Ic
/><\ ‘
A1TN
LT T T T N D R I T O A A
2T N I A O A O

Crossbar select bytes

FIG. 93B

U.S. Patent Jan. 5,2016 Sheet 460 of 509

Definition

def CrossbarTernary(op,rd,re,rb,ra) as
d « RegRead(rd, 128)
¢ « RegRead(re, 128)
b « RegRead(rb, 128)
cdcase op of
X.SELECT:
cdecljd
fori« 0to 15
j « bgriva. gri
28%i+7..8% ¢ CdB'j+7..8‘j
endfor
X.TRANSPOSE:
dcedjlc
fori« 0to 127
forje0to7
Kj < ibjege2 joa
endfor
aj « deg
endfor
endcase
RegWrite(ra, 128, z)
enddef

FIG. 93C

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 461 of 509 US 9,229,713 B2

Exceptions

none

FIG. 93D

U.S. Patent Jan. 5,2016 Sheet 462 of 509 US 9,229,713 B2

Operation codes

E.EXTRACT.L.08 Ensemble extract immediale signed bytes
E.EXTRACT.L.18 Ensemble extract immediale signed doublets
E.EXTRACT.I.32 Ensemble extract immediate signed quadlets
E.EXTRACT.|.64 Ensemble extract immediate signed octlets
E.EXTRACT.I.U.08 Ensemble extract immediate unsigned bytes
E.EXTRACT.L.U.16 Ensemble extract immediate unsigned doublets
E.EXTRACT.L.U.32 Ensemble extract immediate unsigned quadiets
E.EXTRACT.L.U.64 Ensemble extract immediate unsigned octlets
E.MUL.X.1.08 Ensemble multiply extract immediate signed bytes
E.MUL.X.1.16 Ensemble multiply extract immediate signed doublets
E.MUL.X.1.32 Ensemble multiply extract immediate signed quadlets
E.MUL.X.1.64 Ensemble multiply extract immediate signed octlets
E.MUL.X.I.C.08 Ensemble multiply extract immediate complex bytes
E.MUL.X.\.C.16 Ensemble multiply extract immediate complex doublets
E.MUL.X.I.C.32 Ensemble multiply extract immediate complex quadlets
E.MUL.X.1.C.64 Ensemble multiply extract immediate complex octlels
Selection
class op type size
extract immediate E.EXTRACT |none U 816 32 64
A
mulliply extract immediate | E.MUL.XI NONE . 816 32 64
C " . 816 32 64
Format

E.op.tsize rd=rc,rb,i

rd=eoptsize (rc,rb,i)

31 24 23 18 17 12 11 6 54 32 0
| E.op | rd | rc | rb |t sz] sh |
8 6 6 3 1T 2 3

§Z « log(size) - 3
assert size+3 > i 2 size-4
sh « i - size

FIG. 94A

U.S. Patent Jan. 5,2016 Sheet 463 of 509 US 9,229,713 B2
h g f e d C b a
p 0 n m | k j

|

i

i

|

—&)

|

\i«
B

iy

\extract \extract? \éextract \extract/
y A y y \ Y
hp go fn em dl ck bj ai

Ensemble multiply extract immediate doublets

FIG. 84B

U.S. Patent Jan. 5,2016 Sheet 464 of 509 US 9,229,713 B2

127 rc(128) 0

Y
extract

Y \
extract) extract

extract

y
extract

extract

128 rd(128) 0

Ensemble multiply extract immediate doublets

FIG. 94C

U.S. Patent Jan. 5,20

16 Sheet 465 of 509

US 9,229,713 B2

f

e

\

=

7

T

17

%ﬁ%@%

\extract ﬁ)\extract G?@

ract/

L ; \

\extract/ | \extract/ | \extract/
A

y

ract/

\ext
y

y

gp+ho go-hplen+fm

em-fn}cl+dk

ck-dl

aj+bi

ai-bj

Ensemble multiply extract immediate complex doublets

FIG. 24D

U.S. Patent Jan. 5,2016 Sheet 466 of 509 US 9,229,713 B2

127

rc(128)

Y 4

extract

A
extract

128 ra(128) 0
Ensemble multiply extract immediate complex doublets

FIG. 94E

U.S. Patent Jan. 5,2016 Sheet 467 of 509 US 9,229,713 B2

Definition

def mul(size,h,vs,v,i,ws,w,j) as

mul « ((vs8Vsize-141)1"S128 || vgiza-1+i. i) * ((WSBWsizg-14))78Z€ || Wsize-1+. §)
enddef

def EnsembleExtractimmediate(cp,type,gsize,ra,rb,rc,sh)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
case op || type of
E.EXTRACT A, E.MUL.X.I, EMUL.X.I.C:
5 5 —bs 1
E.EXTRACT.LU:
IS~ CS+—bs 0
endcase
case op || type of
E.EXTRACT.], E. EXTRACT.L.U, EMUL.X.I:
h « 2*gsize
E.MUL.X.I.C:
h « (2*gsize) + 1
endcase
r « gsize + (sh3 ||sh)
for i «~ 0 to 128-gsize by gsize
case op || type of
E.EXTRACT.I, EEXTRACT.L.U:
P « (b [l C)2v(gsize+i)-1..2%
E.MUL.X.I:
p < mul(gsize,h,cs,c,ibs,b,i)
E.MUL.X.I.C:
if i & gsize = 0 then
p < mul(gsize,h,cs,c.i,bs,b,i) - mul(gsize,h,cs,c,i+gsize,bs,b,i+gsize)
else
p « mul(gsize,h,cs,c,i-gsize,bs,b,l) + mul(gsize,h,cs,c,i,bs,b,l-gsize)
endif
endcase
s « 0" || py || ~pf!
vV « ((zs & pn-4)Iip) + (OlIs)
if (Vh..regsize = (28 & Virgsize-1)"* 105128 then
Zgsize-1+i..i <~ Vgsize-1+1..r
else
Zgsize-1+i..i « 28 ? (vh || ~vfsize-1) ; 1gsize
endif
endfor
RegWrite(rd, 128, z)
enddef

FIG. 94F

U.S. Patent Jan. 5,2016 Sheet 468 of 509 US 9,229,713 B2

Exceptions

none

FIG. 94G

U.S. Patent Jan. 5,2016 Sheet 469 of 509 US 9,229,713 B2

Operation codes

E.CON.X.1.08 Ensemble convelve extract immediate signed bytes
E.CON.X.1.16 Ensemble convolve extract immediate signed doublets
E.CON.X.1.32 Ensembls convolve extract immediate signed quadlets
E.CON.X.1.64 Ensemble convolve extract immediate signed octlets
E.CON.X.1.C.08 Ensemble convolve extract immediate signed complex bytes
E.CON.X.1.C.18 Ensemble convolve extract immediate signed complex doublets
E.CON.X.1.C.32 Ensemble convolve extract immediate signed complex quadiets
E.MUL.ADD.X.108 Ensemnble multiply add extract immediate signed bytes
E.MUL.ADD.X.1.16 Ensemble multiply add extract immediate signed doublets
E.MUL.ADD.X.1.32 Ensemble multiply add extract immediate signed quadlets
E.MULADD.X.1.64 Ensemble multiply add extract immediate signed octlets
E.MULADD.X.1.C.08 Ensemble multiply add extract immediate signed complex byles
E.MUL.ADD.X.1.C.16 Ensemble multiply add extract immediate signed complex doublets
E.MUL.ADD.X.1.C.32 Ensemble muitiply add extract immediate signed complex quadiets
E.MUL.ADD.X.I1.C.64 Ensemble multiply add extract immediate signed complex octlets

Selection
class op type |size
convolve extract immediate E.CON.X.I NONE 8 16 32 64
C 8 16 32
multiply add extract immediate | E.MUL.ADD.X |NONE 816 32 64
A
C 8 16 32 64
Format
E.op.tsize rd@rc,rb,i
rd=eoptsize(rd,rc,rb,i)
31 24 23 18 17 12 11 6 54 32 0
| E.op] rd | rc | rb {tisz| sh |
8 6 6 6 1 2 3

sz « log(size) - 3
assert size+3 > | > size-4
sh « i - size

FIG. 95A

US 9,229,713 B2

Sheet 470 of 509

Jan. 5§, 2016

U.S. Patent

(gz)

856 "Old

S)8|qNOP S)eIPaLULLI JOBLXS SAJOAUOD djqLiasul]

0 (8z1)pJ 8zl

(952) pi 1101 G5C

U.S. Patent Jan. 5,2016 Sheet 471 of 509 US 9,229,713 B2

Ehy
o
P s
o € ©
o
° o) ° ° ° o °
° ° 0 ° o ° ° °

rc || rd (256)

Ensemble convolve extract immediate complex doublets
FIG. 95C

255

U.S. Patent Jan. 5,2016 Sheet 472 of 509 US 9,229,713 B2

an & ¥ S
¥ & F

\extrac/ \zxtrac/ ‘\extrac’/ Mra_cy
\

‘ Y ¥ y ¥ L4
hp+x |go+w | fn+v |[em+u]| di+t | ck+s | bj+r | ai+q

+

Ensemble multiply add extract immediate doublets

FIG. 95D

U.S. Patent Jan. 5,2016 Sheet 473 of 509 US 9,229,713 B2

127 rc(128) 0
127
o) o) e} o] 0 o o)
o o] o o o
o (o} o o o
¢ (o] o (o} o
rb(128)
) () q ¢ o o (o}

128 rd(128) 0
Ensemble multiply add extract immediate doublets

FIG. 95E

U.S. Patent Jan. 5,2016 Sheet 474 of 509 US 9,229,713 B2

\ \ \
4 u/ »\/ |
@- K - &gj

+ + +

extract/ \extract/ | \extract/ extract/

Next
\extract/ \extrac/ extract extract
2 \ 4 y 1 y

gp+ho+xgo-hp+w|en+fm+v em-fn+u] cl+dk+t § ck-dl+s | aj+bi+r | ai-bj+q

Ensemble multiply add extract immediate complex doublets

FIG. 95F

U.S. Patent Jan. 5,2016 Sheet 475 of 509 US 9,229,713 B2

127

rb(128)

Y

extract extract

y
extract

y
extract

extract extract

128 rd(128) 0
Ensemble multiply add extract immediate complex doublets

FIG. 95G

U.S. Patent Jan. 5,2016 Sheet 476 of 509

Definition

def mul(size,h,vs,v,iws,w,j) as

mul & ((vs&Vsize-1+)528 || Vsizg.141. i) * ((WSBWsize-14)M"512€ || Weizg-14j.))
enddef

def EnsembleExtractimmediatelnplace(op,lype,gsize,rd,rc,rb,sh)
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
Igsize « log(gsize)
wsize « 128
vsize « 128
case op || type of
E.CON.X.I, E.CON.X.LC:
e«clld
ZS ¢+ es & bs « 1
E.MUL.ADD.X.t, EMUL.ADD.X.1.C:
ds « CS ¢ bs ¢ 25 « 1
endcase
case op || type of
E.CON,X.l, E.CON.X.\.C:
h + (2*gsize) + log(vsize) - Igsize
E.MUL.ADD.X.I;
h « 2'gsize + 1
E.MUL.ADD.X.I.C:
h « (2*gsize) + 2
endcase
I « gsize + (sh3 || sh)
for i < O to wsize-gsize by gsize
case op }} type of
E.CON.X.I:
q[0] & 02°gsize+7-Igsize
for j « 0 to vsize-gsize by gsize
qli+gsize] « qfj] + mul(gsize,h,es,e,i+128,bs,b,j)
endfor
p « g(vsize)
E.CON.X.I.C:
q[0] « 02*gsize+T7-Igsize
for j « 0 to vsize-gsize by gsize
if (~i) & j & gsize = O then
qli+gsize] « q[j] + mul(gsize,h,es,e,i+128B-j,bs,b,j)
else

US 9,229,713 B2

qli+gsize] « q[j] - mul(gsize,h,es,e,i+128-j+2*gsize,bs,b,j)

endif

FIG. 95H-1

U.S. Patent Jan. 5,2016 Sheet 477 of 509 US 9,229,713 B2

endfor
p ¢ q(vsize)
E.MUL.ADD.X.I)
di ¢~ ((ds and disgsize-1)""92|(djugsizen..i)107)
p « mul(size,h,cs,¢,i,bs,b,l) + di
E.MUL.ADD.X.1.C:
di + ((ds and dj+gsize-1)""9528|(disggize-1,.)1107)
if i & gsize = 0 then
p « mul(gsize h.cs,c.1.bs,b,1) - mul(gsize,h,cs,c.itgsize,bs b I+gsize) + di
else
p « mul(gsize,h,cs,c,i-gsize,bs,b,i) + mul(gsize,h,cs,c,i,bs b I-gsize) + di
endif
endcase
$ « 0P || pe || ~pf!
v« {(z5 & pp-q)|ip) + (0lfs)
it (Vh..r+gsize = (28 & Vpagsize-1)* 1903128 then
£gsize-1+1.i & Vgsize-1+r.r
else _ '
Zgsize-1+i..i + 28 ? (vh || ~vfjsize-1) ; 1gsize
endif
endfor
RegWrite(rd, 128, z)
enddef

FIG, 95H-2

U.S. Patent Jan. 5,2016 Sheet 478 of 509 US 9,229,713 B2

Exceptions

none

FIG. 95i

U.S. Patent

Jan. 5, 2016

Sheet 479 of 509

Operation codes

E.CON.C.F.16 Ensemble convolve complex floating-point half
E.CON.C.F.32 Ensemble convolve complex floaling-point single
E.CON.F.16 Ensemble convolve floating-point half
E.CON.F.32 Ensemble convolve floating-point single
E.CON.F.64 Ensemble convolve floating-point double
E.MUL.ADD.C.F.016 |Ensemble multiply add complex floating-point half

E.MUL.ADD.C.F.032

Ensemble multiply add complex floating-point single

E.MUL.ADD.C.F.064

Ensemble multiply add complex floating-point double

E.MUL.ADD.F.016

Ensemble multiply add floating-point half

E.MUL.ADD.F.016.C

Ensemble multiply add floating-point half ceiling

E.MUL.ADD.F.016.F

Ensemble multiply add floating-paint half floor

E.MUL.ADD.F.016.N

Ensemble multiply add floating-point half nearest

E.MUL.ADD.F.016.X

Ensemble multiply add floating-point half exact

E.MUL.ADD.F.016.Z

Ensemble multiply add floating-point half zero

E.MUL.ADD.F.032

Ensemble multiply add floating-point single

E.MUL.ADD.F.032.C

Ensemble multiply add floating-point single ceiling

E.MUL.ADD.F.032.F

Ensemble multiply add floating-point single floor

E.MUL.ADD.F.032.N

Ensemble multiply add floating-point single nearest

E.MUL.ADD.F.032.X

Ensemble multiply add floating-point single exact

E.MUL.ADD.F.032.Z2

Ensemble multiply add floating-point single zero

E.MUL.ADD.F.064

Ensemble mulliply add floating-point double

E.MUL.ADD.F.064.C

Ensemble multiply add floating-point double ceiling

E.MUL.ADD.F.064.F

Ensemble multiply add floating-point double floor

E.MUL.ADD.F.064.N

Ensemble multiply add floating-point double nearest

E.MUL.ADD.F.064.X

Ensemble multiply add floating-point double exact

E.MUL.ADD.F.064.Z

Ensemble multiply add floating-point double zero

E.MUL.ADD.F.128

Ensemble multiply add floating-point quad

E.MUL,ADD.F.128.C

Ensemble multiply add floating-peint quad ceiling

E.MUL.ADD.F.128.F

Ensemble multiply add floating-point quad floor

E.MUL.ADD.F.128.N

Ensemble multiply add floating-point quad nearest

E.MUL.ADD.F.128.X

Ensemble multiply add floating-point quad exact

E.MUL.ADD.F.128.Z

Ensemble multiply add floating-point quad zero

E.MUL.SUB.C.F.016

Ensemble multiply subtract complex floating-point half

E.MUL.SUB.C.F.032

Ensemble multiply subtract complex floating-point single

E.MUL.SUB.C.F.064

Ensemble multiply subtract complex floating-point double

E.MUL.SUB.F.016

Ensemble multiply subtract floating-point half

E.MUL.SUB.F.032

Ensemble multiply subtract floating-point single

E.MUL.SUB.F.064

Ensemble mutltiply subtract floating-point double

E.MUL.SUB.F:128

Ensemble multiply subtract floating-point quad

FIG. 96A-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 480 of 509 US 9,229,713 B2

Selection
class op type |prec round/irap
convolve E.CON F 16 32 64 NONE
CF |16 32 NONE
multiply add E.MULAD |F 16 32 64 128 none CFNXZ
D
C.F 16 32 64 NONE
multiply subtract |E.MUL.SU |F 16 32 64 128 NONE
B
C.F 16 32 64 NONE
Format
E.op.prec.rnd rd@rc,rb
rd=eapprecrnd(rd,rc,rb)
31 24 23 18 17 12 11 65 0
l E.prec | rd | rc] rb | op.rnd |
8 6 3 3 6

FIG. 96A-2

U.S. Patent Jan. 5,2016 Sheet 481 of 509 US 9,229,713 B2

~
o o
o
ol ol ol ol of| ol of o
=
[1+}
i o)
et
£
o)
T
L)
o
8 c
S ®
N Om
© = 0
— o o
- _>-.
? 2
o L
O
Q@
e}
£
[}
0
c
L
——
e o]
(q\]
-~
g
©
|-
Bl ol o} o | o] o o | o 0
o N
™

U.S. Patent Jan. 5,2016 Sheet 482 of 509 US 9,229,713 B2

p——
(<]
(9]
~ z
£
o = o
o
[+] [+ o (] o]] [¢] [+
o]] [«] 0 o] [o] [+

rc | | rd (256)

Ensemble convolve complex floating-point half
FIG. 96C

rd(128)

255

U.S. Patent Jan. 5,2016 Sheet 483 of 509 US 9,229,713 B2

Definition

def mul(size.v.iw.j) as
mul « fmul(F(size, Veize-1+i. i) F (8128, Wgize-14. j))
enddef

def EnsembleinplaceFloatingPoint(op,prec.rd.re.rb) as
d < RegRead(rd, 128)
¢ « RegRead(rc, 128)
b « RegRead(rb, 128)
weize « 128
vsize « 128
me«cld
for i + 0 o wsize-prec by prec
case op of
E.CONF:
/INULL value doesn't combine with zero to alter sign bit
a0}t « NULL
for j « O to vsize-prec by prec
gli+prec} « fadd(gfj}, mul(prec,m,i+128-j,b,j))
endfor
zl « glvsize]
E.CONCF:
JINULL value doesn'’t combine with zero to alter sign bit
qf0].t « NULL
for j < O to vsize-prec by prec
if (~1) & j & prec = 0 then
qli+prec) « fadd(qg[j], mul{prec,m,i+128-}b,j))
alse
all+prec] « fsub{qfi], mul{prec,m,i+128-j+2*prac,b,j))
endlf
andfor
2i «qfvsize]
E.MUL.ADD.F:
di «- F(prec.disprec-1..i)
2i « fadd(dl, mul{prec,c,ib.l))
E.MUL.ADD.C.F:
di « F(prec,disprec-1..1)
if (i and prec) then
zi « fadd(di, fadd(mul(prac,c.i,b.i-prec), mul(c.i-prec,b,i}))
else
zi « fadd(di, fsub{mul(prec,c.i,b.l), mul(prec.c,i+prec,b,i+prec)))
endif
E.MUL.SUB.F:
di « F(prec,di+prec-1..i)
2zl « frsub(di, mul(prec,c,i,b,i))

FIG. 96D-1

U.S. Patent Jan. 5,2016 Sheet 484 of 509 US 9,229,713 B2

E.MUL.SUB.C.F:
di « F(prec,dis+prec-1..i)
if (i and prec) then
2i « frsub(di, fadd(mul(prec,c,i,b.i-prec), mul(c,i-prec,b,i)))
else
2i « frsub(di, fsub(mul(prec,c,i,b,i), mul{prec,c,i+prec,b,i+prec)))
endif
endcase
Zj+prec-1..i < PackF(prec, zi, round)
endfor
RegWrite(rd, 128, 2)
enddef

FIG. 96D-2

U.S. Patent Jan. 5,2016 Sheet 485 of 509 US 9,229,713 B2

Exceptions

Floating-point arithmetic

FIG. 96E

U.S. Patent Jan. 5,2016 Sheet 486 of 509 US 9,229,713 B2
Operation codes
E.MUL.G.08 Ensemble muitiply Galois fieid byte
E.MUL.SUM.G.08 Ensemble muiltiply sum Galois field byte
Selection
class op size
Multiply Galois field E.MUL.G 8
Multiply sum Galois field E.MUL.SUM.G |8
Format
E.op.G8 ra=rd,rc,rb
ra=emulgsize(rd,rc,rb)
31 24 23 18 17 12 11 6 5 0
| E.op.G8 | rd | rc] rb | ra |
8 6 6 6 6

FIG. 97A

U.S. Patent Jan. 5,2016 Sheet 487 of 509 US 9,229,713 B2

2047 rd (128

> 127

rc(128)

i
NexXiacy ¥ “exiacy ¥y ~exifacy’
f—:y S5
. A
ra(128)

Ensemble multiply Galois field bytes
FIG. 97B

U.S. Patent Jan. 5,2016 Sheet 488 of 509 US 9,229,713 B2

Definition

def ¢ « PolyMultiply(size,a,b) as
pl0] « 02'size
for k « 0 to size-1
plict1] ¢ pl] * (ak ? (052 || b |} 0%) : 02°size)
endfor
¢ « p[size]
enddef

def ¢ + PolyResidue(size,a,b) as
plsize] « a
for kK + size-110 0 by -1
pIk} « plk+1] * (plk+1lsize+k ? (057281 [11 b || OK) : 02'size)
endfor
¢ « p[Olsize-1..0
enddef

def EnsembleTernary(op,size,rd.rc,rb,ra) as
d « RegRead(rd, 128)
¢ « RegRead(rc, 128)
b < RegRead(rb, 128)
case op of
E.MUL.G:
for i « O to 128-size by size
Zsize-1+i..i +- PolyResidue(size,PolyMul(size,csize-1 +i..i,dsize-1+i..i): Dsize-1 +i..i)
endfor
E.MUL.SUM.G:
pl0) - 0128
for i « 0 to 128-size by size
pli+size] « p[i] * PolyMul(size,Csize-1+i..l.gize-1+1..1).
endfor
z « 0128-size || polyResidue(size,p[128}.bsize-1.0)
endcase
RegWrite(ra, 128, z)
enddef

FIG. 97C

U.S. Patent Jan. 5,2016 Sheet 489 of 509 US 9,229,713 B2

Exceptions

none

FIG. 97D

U.S. Patent

Jan. 5, 2016

Sheet 490 of 509

Operation codes

E.LOG.MOST.008 Ensemble log of most significant bit signed bytes
E.LOG.MQOST.016 Ensemble log of most significant bit signed doublets
E.LOG.MOST.032 Ensemble log of most significant bit signed quadiets
E.LOG.MOST.064 Ensemble log of most significant bit signed octlets
E.LOG.MOST.128 Ensemble log of most significant bit signed hexlet
E.LOG.MOST.U.008 | Ensemble log of most significant bit unsigned bytes
E.LOG.MOST.U.016 _ | Ensemble log of most significant bit unsigned doublets
E.LOG.MOST.U.032 | Ensemble log of most significant bit unsigned guadlets
E.LOG.MOST.U.064 | Ensemble log of most significant bit unsigned octlets
E.LOG.MOST.U.128 | Ensemble log of most significant bit unsigned hexlet
E.SUM.08 Ensemble sum signed bytes
E.SUM.16 Ensemble sum signed doublets
E.SUM.32 Ensemble sum signed quadlets
E.SUM.64 Ensemble sum signed octlets
E.SUM.C.08 Ensemble sum complex bytes
E.SUM.C.16 Ensemble sum complex doublets
E.SUM.C.32 Ensemble sum complex quadlets
E.SUM.P.01" Ensemble sum polynomial bits
E.SUM.P.08 Ensemble sum polynomial bytes
E.SUM.P.16 Ensemble sum polynomial doublets
E.SUM.P.32 Ensemble sum polynomial quadlets
E.SUM.P.64 Ensemble sum polynomial octlets
E.SUM.U.01" Ensemble sum unsigned bits
E.SUM.U.08 Ensemble sum unsigned bytes-
E.SUM.U.16 Ensemble sum unsigned doublets
E.SUM.U.32 Ensemble sum unsigned quadlets
E.SUM.U.64 Ensemble sum unsigned octlets
Selection
class op size
sum SUM 816 32 64
SUM.C 8 16 32
SUM.P 1~ 816 32 64
- SUM.U ‘ . 1 8 16 32 64
log most LOG.MOST LOG.MOST.U 816 32 64 128
| significant bit

FIG. 98A-1

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 491 of 509 US 9,229,713 B2

Format
E.op.size rd=rc
rd=eopsize(rc)
31 24 23 18 17 12 11 6 5 0
| E.size | rd i rc | op | E.UNARY |
8 6 6 6 B

FIG. 98A-2

U.S. Patent Jan. 5,2016 Sheet 492 of 509 US 9,229,713 B2

Definition

def EnsembleUnary(op,size,rd,rc)
¢ < RegRead(rc, 128)
case op of
E.LOG.MOST:
fori « 0 to 128-size by size
if (Ci+size-1..i = cg.%8.1+i) then
Zissize-1..i — -1
else
forj « O to size-2
if Csize-1+i. j+i = cg,gg:] 'JI If not Cgjzg-1+1) then
Zj+size-1.i]

endif
endfor
endif
endfor
E.LOG.MOSTU:

fori « O to 128-size by size
if (Ci+size-1.. =0) then
Zi+size-1..i < -1
else
for j « O to size-1
if Csize-+i.j+i = (052811 || 1) then
Zi+size-1.j ¢

endif
endfor
endif
endfor
E.SUM:
pl0] « 0128

for i « O to 128-size by size
plitsize} « pfi} + (Cs|ze.$1'§|e It Csize-1+i..i)
endfor.

z « p[128)
E.SUM.C:

p[0] « 084
plsize} « 054
for i < 0 to 128-size by size
pli+2*size] « pli} + (cBES7S; Il Csize-1+i.)
endfor

z « p[128+size] || p[128]
E.SUM.P:

FIG. 98B-1

U.S. Patent Jan. 5,2016 Sheet 493 of 509 US 9,229,713 B2

p[O] - 0128
fori « 0 to 128-size by size
pli+size] « p[i] * (0128512€ || cgp6.14i,)
endfor
Z < p[128)
E.SUMU:
p[0] « 0128
for i « O to 128-size by size
pli+size] « pli] + (01285128 || cgjp0 4.4 j)
endfor
Z + p[128]
endcase
RegWrite(rd, 128, z}
enddef

FIG. 98B-2

U.S. Patent Jan. 5,2016 Sheet 494 of 509 US 9,229,713 B2

Exceptions

none

FIG. 98C

U.S. Patent

Jan. 5§, 2016

Sheet 495 of 509

Operation codes

E.ABS.F.016 Ensemble absolute value floating-point half
E.ABS.F.016.X Ensemble absolute value floating-point half exception
E.ABS.F.032 Ensemble absolute value floating-point single
E.ABS.F.032.X Ensemble absolute value floating-point single exception
E.ABS.F.064 Ensemble absolute value floating-point double
E.ABS.F.064.X Ensemble absolute value floating-point double exception
E.ABS.F.128 Ensemble absolute value floating-point quad '
E.ABS.F.128.X Ensemble absolute value floating-point quad exception
E.COPY.F.016 Ensemble copy floating-point half

E.COPY.F.016.X Ensemble copy floating-point half exception
E.COPY.F.032 Ensemble copy floating-point single

E.COPY.F.032.X Ensemble copy floating-point single exception
E.COPY.F.064 Ensemble copy floating-point double
E.COPY.F.084.X Ensemble copy floating-point doubie exception
E.COPY.F.128 Ensemble copy floating-point quad

E.COPY F.128.X

Ensemble copy floating-point quad exception

E.DEFLATE.F.032

Ensemble convert floating-point half from single

E.DEFLATE.F.032.C

Ensemble convert floating-point half irom single ceiling

E.DEFLATE F.032.F

Ensemble convert floating-point half from single floor

E.DEFLATE.F.032.N

Ensemble convert floating-point half from single nearest

E.DEFLATE.F.032.X

Ensemble convert floating-point half from single exact

E.DEFLATE.F.032.2

Ensemble convert floating-point half from single zero

E.DEFLATE.F.064

Ensemble converl floating-point single from double

E.DEFLATE.F.064.C

Ensemble convert floating-point single from double ceiling

E.DEFLATE.F.064.F

Ensemble convert floating-point single from double floor

E.DEFLATE.F.064:N

Ensemble convert floating-point single from double nearest

E.DEFLATE.F.064.X

Ensemble convert floating-point single from double exact

E.DEFLATE.F.064.Z

| Ensemble convert floating-point single from double zero

E.DEFLATE.F.128

Ensemble convert floating-point double from quad

E.DEFLATE.F.128.C

Ensemble convert floating-point double from quad ceiling

E.DEFLATEF.128.F

Ensemble convert floating-point double from quad floor

E.DEFLATE.F.128.N

Ensemble convert floating-point double from quad nearest

E.DEFLATE F.128.X

Ensemble convert floating-point double from quad exact

E.DEFLATEF.128.2

Ensemble convert floating-point double from quad zero

E.FLOAT.F.016

Ensemble convert floating-point half from doublets

E.FLOAT.F.018.C

Ensemble convert floating-point half from doublets ceiling

E.FLOAT.F.016.F

Ensemble convert floating-point half from doublets floor

FIG. 99A-1

US 9,229,713 B2

U.S. Patent

Jan. 5, 2016

Sheet 496 of 509

E.FLOAT,F.016.N

Ensemble convert floating-point half from doublets nearest

E.FLOAT.F.016.X

Ensemble convert floating-point half from doublets exact

E.FLOAT.F.016.Z

Ensemble convert floating-point half from doublets zero

E.FLOAT.F.032

Ensemble convert floating-point single from quadiets

E.FLOAT.F.032.C

Ensemble convert floating-point single from quadiets ceiling

E.FLOAT.F.032.F

Ensemble convert floating-point single from quadlets floor

E.FLOAT.F.032.N

Ensemble convert floaling-point single from quadlets nearest

E.FLOAT.F.032.X

‘Ensemble convert floating-point single from quadlets exact

E.FLOAT.F.032.2

Ensemble convert floating-point single from quadiets zero

E.FLOAT.F.064

Ensemble convert floating-point double from octlets

E.FLOAT.F.064.C

Ensemble convert floating-point double from octlets ceiling

E.FLOAT.F.064.F

Ensemble convert floating-point double from ocilets flaor

E.FLOAT.F.064 N

Ensemble convert floating-point double from octlets nearest

E.FLOAT.F.064.X

Ensemble convert floating-point double from actlets exact

E.FLOAT.F.064.2

Ensemble convert floating-point double from octlets zero

E.FLOAT.F.128

Ensemble convert floating-point quad from hexlet

E.FLOAT.F.128.C

Ensemble convenrt floating-point quad from hexlet ceiling

E.FLOAT.F.128.F

Ensemble convert floating-point quad from hexlet floor

E.FLOAT.F.128.N

Ensemble convert floating-point quad from hexlet nearest

E.FLOAT.F.128.X

Ensemble convest fioating-point quad from hexlet exact

E.FLOAT.F.128.Z

Ensemble convert floating-point quad from hexlet zero

E.INFLATE.F.016

Ensemble convert floating-point single from half

E.INFLATE F.016.X

Ensemble convert floating-point single from half exception

E.INFLATE.F.032

Ensemble convert floaling-point double from single

E.INFLATE.F.032.X

Ensemble convert fioaling-point double from single exception

E.INFLATE.F.064

Ensemble convert floating-point quad from double

E.INFLATE.F.064.X

Ensemble convert fioating-point quad from double exception

E.NEG.F.016 Ensemble negate floating-point half
E.NEG.F.016.X Ensemble negate floating-point half exception
E.NEG.F.032 Ensemble negate floating-point single
E.NEG.F.032.X Ensemble negate floating-point single excaption
E.NEG.F.064 . Ensemble negate floating-point double
E.NEG.F.064.X Ensemble negate floating-point double exception
E.NEG.F.128 Ensemble negate floating-point quad
E.NEG.F.128.X Ensemble negate floating-point quad exception

E.RECEST.F.016

Ensemble reciprocal estimate floating-point half

E.RECEST.F.016.X

Ensemble reciprocal estimate floating-point haif exception

E.RECEST.F.032

Ensemble reciprocal estimate floating-point single

FIG. 99A-2

US 9,229,713 B2

U.S. Patent

Jan. 5§, 2016

Sheet 497 of 509

E.RECEST.F.032.X

Ensemble reciprocal estimate floating-point single exception

E.RECEST.F.064

Ensemble reciprocal estimate floating-point double

E.RECEST.F.064.X

Ensemble reciprocal estimate floating-point double exception

E.RECEST.F.128

Ensemble reciprocal estimate floating-point quad

E.RECEST.F.128.X

Ensemble reciproca! estimate floating-point quad exception

E.RSQREST.F.016

Ensemble floating-point reciprocal square root estimate half

E.RSQREST.F.016.X

Ensemble floating-point reciprocal square root estimate half exact

E.RSQREST.F.032

Ensemble floating-point reciprocal square root estimate single

E.RSQREST.F.032.X

Ensemble floating-point reciprocal square root estimate single exact

E.RSQREST.F.064

Ensemble floating-point reciprocal square root estimate double

E.RSQREST.F.064.X

Ensemble fioating-point reciprocal sguare root astimate double exact

E.RSQREST.F.128

Ensemble floating-point reciprocal square root estimate quad

E.RSQREST.F.128.X

Ensemble floating-point reciprocal squara root astimate quad exact

E.SINK.F.016

Ensemble convert floating-point doublets from half nearest defaull

E.SINK.F.016.C

Ensemble convert floating-point doublets from half ceiling

E.SINK.F.016.C.D

Ensemble convert floating-point doublets from half ceiling default

E.SINK.F.016.F Ensemble convert floating-point doublets from half floor
E.SINK.F.016.F.D Ensemble convert floating-point doublets from half fleor default
E.SINK.F.016.N Ensemble convert floating-point doublets from half nearest
E.SINK.F.016.X Ensemble conven floating-point doublets from half exact
E.SINK.F.018.Z Ensemble convert floating-point doublets from half zero
E.SINK.F.016.Z.D Ensemble convert floating-point doublets from half zero default
E.SINK.F.032 Ensemble convert floating-point quadlets from single nearest default
E.SINK.F.032.C Ensemble convert floating-point quadlsts from single ceiling

E.SINK.F.032.C.D

Ensemble convert floating-point quadiets from single ceiling default

E.SINK.F.032.F

Ensemble convert floating-point quadiets from single floor

E.SINK.F.032.F.D

Ensemble convert floating-point quadiets from single floor default

E.SINK.F.032.N

Ensemble conven floating-point quadiets from single nearest

E.SINK.F.032.X Ensemble convert floating-point quadlets from single exact
E.SINK.F.032.Z Ensemble conven floating-point quadlats from single zero
E.SINK.F.032.ZD Ensemble convert floating-point quadlets from single zero default |
E.SINK.F.064 Ensemble convert floating-point octists from double nearest default
E.SINK.F.064.C Ensemble convert floating-point actiets from double ceiling
E.SINK.F.084.C.D Ensemble convert floating-point actlets from double ceiling default
E.SINK.F.064.F Ensemble convert fioaling-point cclists from double floor
E.SINK.F.064.F.D Ensemble convert floating-point octlets from double floor default
E.SINK.F.064.N Ensemble convert floating-point cctlets from double nearest
E.SINK.F.064.X Ensembie convert floating-point octlets from double exact

FIG. 99A-3

US 9,229,713 B2

U.S. Patent

Jan. 5, 2016 Sheet 498 of 509 US 9,229,713 B2

E.SINK.F.064.Z Ensemble convert floating-point octlets from double zero
E.SINK.F.064.Z2.D Ensemble convert floating-point octlets from double zero default
E.SINK.F.128 Ensemble convert floating-point hexlet from quad nearest default
E.SINK.F.128.C Ensemble convert floating-point hexlet from quad ceiling
E.SINK.F.128.C.D Ensemble convert floating-point hexlet from quad ceiling default
E.SINK,F.128.F Ensemble convert floating-point hexlet from quad floor
E.SINK.F.128.F.D Ensemble convert floating-point hexlet from quad floor default
E.SINK.F.128.N Ensemble convert floating-point hexlet from quad nearest
E.SINK.F.128.X Ensemble convert floating-point hexlet from quad exact
E.SINK.F.128.Z Ensemble convert floating-point hexlet from quad zero
E.SINK.F.128.Z.D Ensemble convert floating-peint hexlet from quad zero defauit
E.SQR.F.016 Ensemble square root floating-point half

E.SQR.F.016.C Ensemble square root floating-point half ceiling
E.SQR.F.016.F Ensemble square root floating-point half floor
E.SQR.F.016.N Ensemble square root floating-point half nearest
E.SQR.F.016.X Ensemble square root floating-point half exact
E.SQR.F.016.Z Ensemble square root floating-paint half zero
E.SQR.F.032 Ensemble square root floating-point single

E.SQR.F.032.C Ensemble square root floating-point single ceiling
E.SQR.F.032.F Ensemble square root floating-point single floor
E.SQR.F.032.N Ensembie square root floating-point single nearest
E.SQR.F.032.X Ensemble square root floating-point single exact
E.SQR.F.032.Z Ensemble square root floating-point single zero
E.SQR.F.064 Ensemble square root floating-point double
E.SQR.F.064.C Ensemble square root floating-point double ceiling
E.SQR.F.064 F Ensemble square root floating-point double floor
E.SQR.F.064.N Ensemble square root floating-point double nearest
E.SQR.F.064 X Ensemble square root floating-point double exact
E.SQR.F.064.Z Ensemble square root floating-point double zero
E.SQR.F.128 . Ensemble square root floating-point quad

E.SQR.F.128.C . | Ensemble square root floating-point quad ceiling
E.SQR.F.128.F. Ensemble square root floating-point quad floor
E.SQR.F.128.N Ensemble square root floating-point quad nearest
E.SQR.F.128.X Ensemble square root floating-point quad exact
E.SQR.F.128.Z Ensemble square root floating-point quad zero
E.SUM.C.F.016 Ensemble sum complex floating-point half

E.SUM.C.F.032 Ensemble sum complex floating-point single
E.SUM.C.F.064 Ensemble sum complex floating-point double

FIG. 93A-4

U.S. Patent

Jan. 5§, 2016

Sheet 499 of 509

US 9,229,713 B2

E.SUM.F.016 Ensemble sum floating-point half
E.SUM.F.016.C .| Ensemble sum floating-point haif ceiling
E.SUM.F.016.F Ensemble sum floating-point haif floor
E.SUM.F.016.N Ensemble sum floating-point half nearest
E.SUM.F.016.X Ensemble sum floating-point haif exact
E.SUM.F.016.Z Ensemble sum floating-point half zero
E.SUM.F.032 Ensemble sum floating-point single
E.SUM.F.032.C Ensemble sum floating-point single ceiling
E.SUM.F.Q32.F Ensemble sum floating-point single floor
E.SUM.F.032.N Ensemble sum floating-point single nearest
E.SUM.F.032.X Ensemble sum floating-point single exact
E.SUM.F.032.2 Ensemble sum floating-point single zero
E.SUM.F.064 Ensemble sum floating-point double
E.SUM.F.064.C Ensemble sum floating-point double ceiling
E.SUM.F.064.F Ensemble sum floating-point double floor
E.SUM.F.064.N Ensemble sum floating-point double nearest
E.SUM.F.064.X Ensemble sum floating-point double exact
E.SUM.F.064.Z Ensemble sum floating-point double zero
E.SUM.F.128 Ensemble sum floating-point quad
E.SUM.F.128.C Ensemble sum floating-point quad ceiling
E.SUM.F.128.F Ensemble sum floating-point quad floor
E.SUM.F.128.N Ensemble sum floating-point quad nearest
E.SUM.F.128.X Ensemble sum floating-point quad exact
E.SUM.F.128.Z - Ensemble sum floating-point quad zero

FIG. 99A-5

U.S. Patent Jan. 5,2016 Sheet 500 of 509 US 9,229,713 B2
Selection
op __|prec round/trap
copy COPY 16 32 64 128 |none X
absolute value ABS 16 32 64 128 |none X
float from integer FLOAT 1632 64 128 [none CFNXZ
integer from float SINK 16 32 64 128 [NnoNeCFNXZ
CDFDZD
increase format INFLATE {16 32 64 NONE X
precision
decrease format DEFLATE 32 64 128 ([noneCFNXZ
precision
negate NEG 16 32 64 128 | none X
reciprocal estimate RECEST |16 32 64 128 |none X
reciprocal square root RSQRES (16 32 64 128 |none X
estimate T
sguare root SQR 16 32 64 12B|noneCFNXZ
sum SUM 16 32 64 12B [noNe CFNXZ
complex sum SUM.C 16 32 64 NONE
Format
E.op.prec.rnd rd=r¢
rd=eopprecrnd(rc)
31 24 23 18 17 12 11 65 0
| E.prec | rd | rc | op.rnd | E.UNARY |
8 6 6 6 6

FIG. 99A-6

U.S. Patent Jan. 5,2016 Sheet 501 of 509

Definition

def EnsembleUnaryFloatingPoint(op,prec,round,rd,re) as
¢ « RegRead(rc, 128)
case op of
E.ABS.F, E.NEG.F, E.SQR.F:
fori « 0 to 128-prec by prec
ci « F(prec Ci+prac-1..i)
case op of
E.ABS.F:
zit e cit
28«0
zie «cle
zlf - gif
E.COPY.F;
Zj ¢ Ci
E.NEG.F:
zit + cit
zi.g + ~cl.s
Zi.e «cie
zi.f « ci.f
E.RECEST.F:
zZi « frecest(ci)
E.RSQREST.F:
2l « frsgrest(ci)
E.SQR.F:
Zj « fsqr(cl)
endcase
Zisprac-1..1 + PackF(pree, zl, round)
endfor
E.SUM.F:
p[0].t « NULL
for i < 0 to 128-prec by prec
pli+prec] « fadd(p[i}, F(prec.ci+prec-1..i))
endfor
z « PackF(prec, p[128], round)
E.SUM.CF:
plO].t <~ NULL
plprac).t « NULL
for i « 0 to 128-prec by prec
pli+2*size] « fadd(p[i), F(prec.Ci+prac-1..)))
endfor

US 9,229,713 B2

z « 0 || PackF(prec, p[128+prec}, round) || PackF(prec, p{128], round)

E.SINK.F:
for i « 0 to 128-prec by prec

FIG. 99B-1

U.S. Patent Jan. 5,2016 Sheet 502 of 509

¢i « F(prec,Ci+prec-1..i)
Zi+prec-1..i + fsinkr(prec, ci, round)
endfor
E.FLOAT.F:
for i «- 0 to 128-prec by prec
ci.t <« NORM
ciee0
Ci.S «— Ci+prec_1
ci.f < ci.s ? 1+~Cjsprec-2..i : Ci+proc-2..i
Zj+prec-1..i ¢ PackF(prec, ci, round)
endfor
E.INFLATE.F:
for i ¢ 0 to 64-prec by prec
¢i « F(prec,Cisprac-1..i)

Zi+i+prec+prec-1..i+i € PackF(prec+prec, ci, round)

endfor
E.DEFLATE.F:
for i < 0 to 128-prec by prec
cl« F(prec‘ci+prec—1.j)
Zi/2+prec/2-1..ij2 < PackF(preci2, i, round)
endfor
2927.64 0
endcase
RegWrite[rd, 128, z]
enddef

FIG. 99B-2

US 9,229,713 B2

U.S. Patent Jan. 5,2016 Sheet 503 of 509 US 9,229,713 B2

Exceptions

Floating-point arithmetic

FIG. 99C

U.S. Patent Jan. 5,2016 Sheet 504 of 509 US 9,229,713 B2

ocal virtual adaress

address cache data

1

local virtual

to global —_r—
virtual data

address local
translation protection
I address cache tag
=L global
protecton
e = - hit
I N
global
virtual to
physical
address global
translation protection

physical address
T

]

Memeory management organization

FIG. 100

U.S. Patent Jan. 5,2016 Sheet 505 of 509 US 9,229,713 B2

Superspring pipeline

FIG. 101

U.S. Patent Jan. 5,2016 Sheet 506 of 509 US 9,229,713 B2

0 1 3 4 5
Loc RES R
: ALIGN
Py read bypgss
Kate
BTB LzC
write wiite hit
RF ¥ ALU BTE
ate Loc LOC tag [\bctag (| MTB
N LB \ arb - read check wiite
Lzc
tag

FIG. 102

US 9,229,713 B2

Sheet 507 of 509

Jan. 5, 2016

U.S. Patent

Bank Arbitration

—_——— ka1

[ESUPUSRUOR WP,

e Attt nht bk ikl e e A

JE SVUSRS R [R U ——

il Tt Bl e

e e el ‘B dnies kel

I TSNS ST IO R R SN

—

—-—— 1

T+-———

<
saoualejay parlag

61-—-
5

3
2l___
14 -——
0

Applied References

bank 1-port LOC

—e— 8

—s=— 4-bank 2-port

—— 2-bank 4-port LZC

—»— 1-bank 8-port

FIG. 103

US 9,229,713 B2

Sheet 508 of 509

Jan. 5§, 2016

U.S. Patent

(Q Q T T T 6
o i J_] N Al
.l | l T
- =% .Mﬂﬂl.nrl_ll -—F -0
1 [T
i P L
~-r Am:.ﬁe.,_‘: St il EEIEE 3
| | I v i | |
S I FEA Y Ly dod dpdlodm oo Lolol_ 1o
T v_r _V i -t -
Eo) CoNe N [T ~
S TS TR Rt VA N W S T W WU
T Jﬁ m_m &%l _mv/ T A
I 1 i I 1 | | I —
S N P P VY T P Ny S b b e —
[N T RN /"] -
1 H 1 I | 1
i e e S - 1% ==~ 12
I N E NM i
Coor RN _
it eries Reenh mhts Bl wlb B < T 1O
| | |] | |
E L i]
TTTTT T AT T I T T T O R YTt re T T ©
T N T Y B
Sl kil T et et T
S N T
TN T 1@
R T T T B
R T [y SN PR SO Lo
S D T T N T
R T T T B
hah b TR R b B - <
R T E T B
R
[t M e Syl et A s St il At s it | 3 il e ©
T T T N
) IR DR ER PR RSN NN SN SEDIE SRUINE SRS NS NN N i
TTYTOTTYTTTETA r
I N T B
el L do_L_J__ I
T e I S T T T R T A
} i 1] i 1 | | | | i I b |
1] 1 1 m L 1 1 1 L 1 1 13 1 0
©C I T O N T OO O M~NO WM IFTTON~O
T o Yo Y e

S90UalaaY panies

Applied References

-+ —-o--— 8-bank 1-port LOC
---—e--— 16-bank 1-port

- —e — 4-bank 2-port
— —o— — 8-bank 2

-port

bank 4-port LZC

-———8--- 4-bank 4-port

———a—— 2.

1-bank 8-port

2-bank 8-port

1-bank 18-port

FIG. 104

U.S. Patent Jan. 5,2016

Sheet 509 of 509

US 9,229,713 B2

373635343332313029282726252423222120191817161514131211109 8 76 54 3 21

AN|VSS NC A6 A10VCC3
A30 A4 A8 VSS
VSS A3 A5 At1
A28 A29 A5

VSS A25 A3

A22 A26 KEY
VCC3 A24

VSS A2

VCC3

VSS

VCC3

VSS

VCC3

VSS

VCC3

VSS BF1

VCC3 BF2
VSS
VCC3VSS
VS8
VCC3
VSS
VCC3-
VSS
VCC3
VSS
VCC3
V8S
vCC3
VSS
'{o{ox]

D4 D5
V88 A25
DP0O D6

9 D10
D11 D13 D14
NC_D15 D15 D22 VCC3

. : PEPELEEPE> D
POOUMMOITCRFrZZVOTN—AC<S X<NBBOOMABEERE &
o

FLUSH INC INC INC}AN
EADSHADSCH| AM
VCC2| AL
AP |AK
BREQ|AJ
VSS |AH
VCC2|AG
VSS | AF
VCC2| AE
VSS [AD
VCC2{AC
VSS |AB
VCC2

VSS
VCC2

VS§S

VCC2
VSS
VCC2
VSS
VCC2
VSS
VCC2
VSS
VCC2
VS8
VCC2
VSS
VCC2
V8§
VCC2
D61 DP6
D52 D54
D44 D48 D58
D45 D47 INC
VSS D43 INC
VCC2 D41 INC

PHOUMTMOI-RTZZVOINAC< S x<Ng

37 3635343332313029282726252423222120191817161514131211109 § 76 54 3 21

FIG. 105

US 9,229,713 B2

1

PROCESSOR FOR EXECUTING WIDE
OPERAND OPERATIONS USING A CONTROL
REGISTER AND A RESULTS REGISTER

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 11/346,213, filed Feb. 3, 2006; now U.S. Pat. No.
8,289,335; which was a continuation of U.S. patent applica-
tion Ser. No. 10/616,303, filed Jul. 10, 2003; which claimed
priority to U.S. Provisional Application No. 60/394,665, filed
Jul. 10, 2002, and was a continuation-in-part of U.S. patent
application Ser. No. 09/922,319, filed Mar. 24, 2000; which
was a continuation of U.S. patent application Ser. No. 09/382,
402, filed Aug. 24, 1999; which claimed priority to U.S.
Provisional Application No. 60/097,635, filed Aug. 24, 1998,
and was a continuation-in-part of U.S. patent application Ser.
No. 09/169,963, filed Oct. 13, 1998; each of which is incor-
porated by reference herein in its entirety for all purposes.

FIELD OF THE INVENTION

The present invention relates to general purpose processor
architectures, and particularly relates to wide operand archi-
tectures.

REFERENCE TO A “SEQUENCE LISTING.” A
TABLE, OR A COMPUTER PROGRAM LISTING
APPENDIX SUBMITTED ON A COMPACT DISK

This application includes an appendix, which was submit-
ted on two compact disks in parent U.S. application Ser. No.
10/616,303, filed Jul. 10,2003, now U.S. Pat. No. 7,301,541,
issued Nov. 27, 2007. The contents of the compact disks are
hereby incorporated by reference in their entirety.

BACKGROUND OF THE INVENTION

Communications products require increased computa-
tional performance to process digital signals in software on a
real time basis. Increases in performance have come through
improvements in process technology and by improvements in
microprocessor design. Increased parallelism, higher clock
rates, increased densities, coupled with improved design
tools and compilers have made this more practical. However,
many of these improvements cost additional overhead in
memory and latency due to a lack of the necessary bandwidth
that is closely coupled to the computational units.

The performance level of a processor, and particularly a
general purpose processor, can be estimated from the mul-
tiple of a plurality of interdependent factors: clock rate,

gates per clock, number of operands, operand and data path
width, and operand and data path partitioning. Clock rate is
largely influenced by the choice of circuit and logic technol-
ogy, but is also influenced by the number of gates per clock.
Gates per clock is how many gates in a pipeline may change
state in a single clock cycle. This can be reduced by inserting
latches into the data path: when the number of gates between
latches is reduced, a higher clock is possible. However, the
additional latches produce a longer pipeline length, and thus
come at a cost of increased instruction latency. The number of
operands is straightforward; for example, by adding with
carry-save techniques, three values may be added together
with little more delay than is required for adding two values.
Operand and data path width defines how much data can be
processed at once; wider data paths can perform more com-
plex functions, but generally this comes at a higher imple-

20

25

30

35

40

45

50

2

mentation cost. Operand and data path partitioning refers to
the efficient use of the data path as width is increased, with the
objective of maintaining substantially peak usage.

The last factor, operand and data path partitioning, is
treated extensively in commonly-assigned U.S. Pat. Nos.
5,742,840, 5,794,060, 5,794,061, 5,809,321, and 5,822,603,
herein incorporated by reference in their entirety, which
describe systems and methods for enhancing the utilization of
a general purpose processor by adding classes of instructions.
These classes of instructions use the contents of general pur-
pose registers as data path sources, partition the operands into
symbols of a specified size, perform operations in parallel,
catenate the results and place the catenated results into a
general-purpose register. These patents, all of which are
assigned to the same assignee as the present invention, teach
a general purpose microprocessor which has been optimized
for processing and transmitting media data streams through
significant parallelism.

While the foregoing patents offered significant improve-
ments in utilization and performance of a general purpose
microprocessor, particularly for handling broadband commu-
nications such as media data streams, other improvements are
possible.

Many general purpose processors have general registers to
store operands for instructions, with the register width
matched to the size of the data path. Processor designs gen-
erally limit the number of accessible registers per instruction
because the hardware to access these registers is relatively
expensive in power and area. While the number of accessible
registers varies among processor designs, it is often limited to
two, three or four registers per instruction when such instruc-
tions are designed to operate in a single processor clock cycle
or a single pipeline flow. Some processors, such as the
Motorola 68000 have instructions to save and restore an
unlimited number of registers, but require multiple cycles to
perform such an instruction.

The Motorola 68000 also attempts to overcome a narrow
data path combined with a narrow register file by taking
multiple cycles or pipeline flows to perform an instruction,
and thus emulating a wider data path. However, such multiple
precision techniques offer only marginal improvement in
view of the additional clock cycles required. The width and
accessible number of the general purpose registers thus fun-
damentally limits the amount of processing that can be per-
formed by a single instruction in a register-based machine.

Existing processors may provide instructions that accept
operands for which one or more operands are read from a
general purpose processor’s memory system. However, as
these memory operands are generally specified by register
operands, and the memory system data path is no wider than
the processor data path, the width and accessible number of
general purpose operands per instruction per cycle or pipeline
flow is not enhanced.

The number of general purpose register operands acces-
sible per instruction is generally limited by logical complex-
ity and instruction size. For example, it might be possible to
implement certain desirable but complex functions by speci-
fying a large number of general purpose registers, but sub-
stantial additional logic would have to be added to a conven-
tional design to permit simultaneous reading and bypassing
of the register values. While dedicated registers have been
used in some prior art designs to increase the number or size
of source operands or results, explicit instructions load or
store values into these dedicated registers, and additional
instructions are required to save and restore these registers
upon a change of processor context.

US 9,229,713 B2

3

The size of an execution unit result may be constrained to
that of a general register so that no dedicated or other special
storage is required for the result. Specifying a large number of
general purpose registers as a result would similarly require
substantial additional logic to be added to a conventional
design to permit simultaneous writing and bypassing of the
register values.

When the size of an execution unit result is constrained, it
can limit the amount of computation which can reasonably be
handled by a single instruction. As a consequence, algorithms
must be implemented in a series of single instruction steps in
which all intermediate results can be represented within the
constraints. By eliminating this constraint, instruction sets
can be developed in which a larger component of an algorithm
is implemented as a single instruction, and the representation
of intermediate results are no longer limited in size. Further,
some of these intermediate results are not required to be
retained upon completion of the larger component of an algo-
rithm, so a processor freed of these constraints can improve
performance and reduce operating power by not storing and
retrieving these results from the general register file. When
the intermediate results are not retained in the general register
file, processor instruction sets and implemented algorithms
are also not constrained by the size of the general register file.

There has therefore been a need for a processor system
capable of efficient handling of operands and results of
greater width than either the memory system or any acces-
sible general purpose register. There is also a need for a
processor system capable of efficient handling of operands
and results of greater overall size than the entire general
register file.

SUMMARY OF THE INVENTION

Commonly-assigned and related U.S. Pat. No. 6,295,599,
describes in detail a method and system for improving the
performance of general-purpose processors by expanding at
least one source operand to a width greater than the width of
either the general purpose register or the data path width.
Further improvements in performance may be achieved by
allowing a plurality of source operands to be expanded to a
greater width than either the memory system or any acces-
sible general purpose register, and by allowing the at least one
result operand to be expanded to a greater width than either
the memory system or any accessible general purpose regis-
ter.

The present invention provides a system and method for
improving the performance of general purpose processors by
expanding at least one source operand or at least one result
operand to a width greater than the width of either the general
purpose register or the data path width. In addition, several
classes of instructions will be provided which cannot be per-
formed efficiently if the source operands or the at least one
result operand are limited to the width and accessible number
of general purpose registers.

In the present invention, source and result operands are
provided which are substantially larger than the data path
width of the processor. This is achieved, in part, by using a
general purpose register to specify at least one memory
address from which at least more than one, but typically
several data path widths of data can be read. To permit such a
wide operand to be performed in a single cycle, a data path
functional unit is augmented with dedicated storage to which
the memory operand is copied on an initial execution of the
instruction. Further execution of the instruction or other simi-
lar instructions that specify the same memory address can
read the dedicated storage to obtain the operand value. How-

10

15

20

25

30

35

40

45

50

55

60

65

4

ever, such reads are subject to conditions to verify that the
memory operand has not been altered by intervening instruc-
tions. If the memory operand remains current—that is, the
conditions are met—the memory operand fetch can be com-
bined with one or more register operands in the functional
unit, producing a result. The size of the result may be con-
strained to that of a general register so that no dedicated or
other special storage is required for the result. The size of the
result for additional instructions may not be so constrained,
and so utilize dedicated storage to which the result operand is
placed on execution of the instruction. The dedicated storage
may be implemented in a local memory tightly coupled to the
logic circuits that comprise the functional unit.

The present invention extends the previous embodiments
to include methods and apparatus for performing operations
that both receive operands from wide embedded memories
and also deposit results in wide embedded memories. The
present invention includes operations that autonomously read
and update the wide embedded memories in multiple succes-
sive cycles of access and computation. The present invention
also describes operations that employ simultaneously two or
more independently addressed wide embedded memories.

Exemplary instructions using wide operations include
wide instructions that perform bit level switching (Wide
Switch), byte or larger table-lookup (Wide Translate), Wide
Multiply Matrix, Wide Multiply Matrix Extract, Wide Mul-
tiply Matrix Extract Immediate, Wide Multiply Matrix Float-
ing point, and Wide Multiply Matrix Galois.

Additional exemplary instructions using wide operations
include wide instructions that solve equations iteratively
(Wide Solve Galois), perform fast transforms (Wide Trans-
form Slice), compute digital filter or motion estimation (Wide
Convolve Extract, Wide Convolve Floating-point), decode
Viterbi or turbo codes (Wide Decode), general look-up tables
and interconnection (Wide Boolean).

Another aspect of the present invention addresses efficient
usage of a multiplier array that is fully used for high precision
arithmetic, but is only partly used for other, lower precision
operations. This can be accomplished by extracting the high-
order portion of the multiplier product or sum of products,
adjusted by a dynamic shift amount from a general register or
anadjustment specified as part of the instruction, and rounded
by a control value from a register or instruction portion. The
rounding may be any of several types, including round-to-
nearest/even, toward zero, floor, or ceiling. Overflows are
typically handled by limiting the result to the largest and
smallest values that can be accurately represented in the out-
put result.

When an extract is controlled by a register, the size of the
result can be specified, allowing rounding and limiting to a
smaller number of bits than can fit in the result. This permits
the result to be scaled for use in subsequent operations with-
out concern of overflow or rounding. As a result, performance
is enhanced. In those instances where the extract is controlled
by a register, a single register value defines the size of the
operands, the shift amount and size of the result, and the
rounding control. By placing such control information in a
single register, the size of the instruction is reduced over the
number of bits that such an instruction would otherwise
require, again improving performance and enhancing proces-
sor flexibility. Exemplary instructions are Ensemble Con-
volve Extract, Ensemble Multiply Extract, Ensemble Multi-
ply Add Extract, and Ensemble Scale Add Extract. With
particular regard to the Ensemble Scale Add Extract Instruc-
tion, the extract control information is combined in a register
with two values used as scalar multipliers to the contents of
two vector multiplicands. This combination reduces the num-

US 9,229,713 B2

5

ber of registers otherwise required, thus reducing the number
of bits required for the instruction.

A method of performing a computation in a programmable
processor, the programmable processor having a first
memory system having a first data path width, and a second
memory system and a third memory system each of the sec-
ond memory system and the third memory system having a
data path width which is greater than the first data path width,
may comprise the steps of: copying a first memory operand
portion from the first memory system to the second memory
system, the first memory operand portion having the first data
path width; copying a second memory operand portion from
the first memory system to the second memory system, the
second memory operand portion having the first data path
width and being catenated in the second memory system with
the first memory operand portion, thereby forming first cat-
enated data; copying a third memory operand portion from
the first memory system to the third memory system, the third
memory operand portion having the first data path width;
copying a fourth memory operand portion from the first
memory system to the third memory system, the fourth
memory operand portion having the first data path width and
being catenated in the third memory system with the third
memory operand portion, thereby forming second catenated
data; and performing a computation of a single instruction
using the first catenated data and the second catenated data.

In the method of performing a computation in a program-
mable processor, the step of performing a computation may
further comprise reading a portion of the first catenated data
and a portion of the second catenated data each of which is
greater in width than the first data path width and using the
portion of the first catenated data and the portion of the second
catenated data to perform the computation.

The method of performing a computation in a program-
mable processor may further comprise the step of specitying
amemory address of each of the first catenated data and of the
second catenated data within the first memory system.

The method of performing a computation in a program-
mable processor may further comprise the step of specitying
a memory operand size and a memory operand shape of each
of the first catenated data and the second catenated data.

The method of performing a computation in a program-
mable processor may further comprise the step of checking
the validity of each of the first catenated data in the second
memory system and the second catenated data in the third
memory system, and, if valid, permitting a subsequent
instruction to use the first and second catenated data without
copying from the first memory system.

The method of performing a computation in a program-
mable processor may further comprise performing a trans-
form of partitioned elements contained in the first catenated
data using coefficients contained in the second catenated data,
thereby forming a transform data, extracting a specified sub-
field of the transform data, thereby forming an extracted data
and catenating the extracted data.

An alternative method of performing a computation in a
programmable processor, the programmable processor hav-
ing a first memory system having a first data path width, and
a second and a third memory system having a data path width
which is greater than the first data path width, may compris-
ing the steps of: copying a first memory operand portion from
the first memory system to the second memory system, the
first memory operand portion having the first data path width;
copying a second memory operand portion from the first
memory system to the second memory system, the second
memory operand portion having the first data path width and
being catenated in the second memory system with the first

5

10

20

25

30

35

40

45

50

55

60

6

memory operand portion, thereby forming first catenated
data; performing a computation of a single instruction using
the first catenated data and producing a second catenated
data; copying a third memory operand portion from the third
memory system to the first memory system, the third memory
operand portion having the first data path width and contain-
ing a portion of the second catenated data; and copying a
fourth memory operand portion from the third memory sys-
tem to the first memory system, the fourth memory operand
portion having the first data path width and containing a
portion of the second catenated data, wherein the fourth
memory operand portion is catenated in the third memory
system with the third memory operand portion.

In the alternative method of performing a computation in a
programmable processor the step of performing a computa-
tion may further comprise the step of reading a portion of the
first catenated data which is greater in width than the first data
path width and using the portion of the first catenated data to
perform the computation.

The alternative method of performing a computation in a
programmable processor may further comprise the step of
specifying a memory address of each of the first catenated
data and of the second catenated data within the first memory
system.

The alternative method of performing a computation in a
programmable processor may further comprise the step of
specifying a memory operand size and a memory operand
shape of each of the first catenated data and the second cat-
enated data.

The alternative method of performing a computation in a
programmable processor may further comprise the step of
checking the validity of each of the first catenated data in the
second memory system and the second catenated data in the
third memory system, and, if valid, permitting a subsequent
instruction to use the first catenated data without copying
from the first memory system.

In the alternative method of performing a computation, the
step of performing a computation may further comprise the
step of performing a transform of partitioned elements con-
tained in the first catenated data, thereby forming a transform
data, extracting a specified subfield of the transform data,
thereby forming an extracted data and catenating the
extracted data, forming the second catenated data.

In the alternative method of performing a computation, the
step of performing a computation may further comprise the
step of combining using Boolean arithmetic a portion of the
extracted data with an accumulated Boolean data, combining
partitioned elements of the accumulated Boolean data using
Boolean arithmetic, forming combined Boolean data, deter-
mining the most significant bit of the extracted data from the
combined Boolean data, and returning a result comprising the
position of the most significant bit to a register.

The alternative method of performing a computation in a
programmable processor may further comprise manipulating
afirst and a second validity information corresponding to first
and second catenated data, wherein after completion of an
instruction specifying a memory address of first catenated
data, the contents of second catenated data are provided to the
first memory system in place of first catenated data.

A programmable processor according to the present inven-
tion may comprise: a first memory system having a first data
path width; a second memory system and a third memory
system, wherein each of the second memory system and the
third memory system have a data path width which is greater
than the first data path width; a first copying module config-
ured to copy a first memory operand portion from the first
memory system to the second memory system, the first

US 9,229,713 B2

7

memory operand portion having the first data path width, and
configured to copy a second memory operand portion from
the first memory system to the second memory system, the
second memory operand portion having the first data path
width and being catenated in the second memory system with
the first memory operand portion, thereby forming first cat-
enated data; a second copying module configured to copy a
third memory operand portion from the first memory system
to the third memory system, the third memory operand por-
tion having the first data path width, and configured to copy a
fourth memory operand portion from the first memory system
to the third memory system, the fourth memory operand
portion having the first data path width and being catenated in
the third memory system with the third memory operand
portion, thereby forming second catenated data; and a func-
tional unit configured to perform computations using the first
catenated data and the second catenated data.

In the programmable processor, the functional unit may be
further configured to read a portion of each of the first cat-
enated data and the second catenated data which is greater in
width than the first data path width and use the portion of each
of the first catenated data and the second catenated data to
perform the computation.

In the programmable processor, the functional unit may be
further configured to specify a memory address of each of the
first catenated data and of the second catenated data within the
first memory system.

In the programmable processor, the functional unit may be
further configured to specify a memory operand size and a
memory operand shape of each of the first catenated data and
the second catenated data.

The programmable processor may further comprise a con-
trol unit configured to check the validity of each of the first
catenated data in the second memory system and the second
catenated data in the third memory system, and, if valid,
permitting a subsequent instruction to use each of the first
catenated data and the second catenated data without copying
from the first memory system.

In the programmable processor, the functional unit may be
further configured to convolve partitioned elements con-
tained in the first catenated data with partitioned elements
contained in the second catenated data, forming a convolution
data, extract a specified subfield of the convolution data and
catenate extracted data, forming a catenated result having a
size equal to that of the functional unit data path width.

In the programmable processor, the functional unit may be
further configured to perform a transform of partitioned ele-
ments contained in the first catenated data using coefficients
contained in the second catenated data, thereby forming a
transform data, extract a specified subfield of the transform
data, thereby forming an extracted data and catenate the
extracted data.

An alternative programmable processor according to the
present invention may comprise: a first memory system hav-
ing a first data path width; a second memory system and a
third memory system each of the second memory system and
the third memory system having a data path width which is
greater than the first data path width; a first copying module
configured to copy a first memory operand portion from the
first memory system to the second memory system, the first
memory operand portion having the first data path width, and
configured to copy a second memory operand portion from
the first memory system to the second memory system, the
second memory operand portion having the first data path
width and being catenated in the second memory system with
the first memory operand portion, thereby forming first cat-
enated data; a second copying module configured to copy a

5

10

15

20

25

30

35

40

45

50

55

60

8

third memory operand portion from the third memory system
to the first memory system, the third memory operand portion
having the first data path width and containing a portion of a
second catenated data, and copy a fourth memory operand
portion from the third memory system to the first memory
system, the fourth memory operand portion having the first
data path width and containing a portion of the second cat-
enated data, wherein the fourth memory operand portion is
catenated in the third memory system with the third memory
operand portion; and a functional unit configured to perform
computations using the first catenated data and the second
catenated data.

In the alternative programmable processor the functional
unit may be further configured to read a portion of the first
catenated data which is greater in width than the first data path
width and use the portion of the first catenated data to perform
the computation.

In the alternative programmable processor the functional
unit may be further configured to specify a memory address of
each of the first catenated data and of the second catenated
data within the first memory system.

In the alternative programmable processor the functional
unit may be further configured to specify a memory operand
size and a memory operand shape of each of the first catenated
data and the second catenated data.

The alternative programmable processor may further com-
prise a control unit configured to check the validity of the first
catenated data in the second memory system, and, if valid,
permitting a subsequent instruction to use the first catenated
data without copying from the first memory system.

In the alternative programmable processor the functional
unit may be further configured to transform partitioned ele-
ments contained in the first catenated data, thereby forming a
transform data, extract a specified subfield of the transform
data, thereby forming an extracted data and catenate the
extracted data, forming the second catenated data.

In the alternative programmable processor the functional
unit may be further configured to combine using Boolean
arithmetic a portion of the extracted data with an accumulated
Boolean data, combine partitioned elements of the accumu-
lated Boolean data using Boolean arithmetic, forming com-
bined Boolean data, determine the most significant bit of the
extracted data from the combined Boolean data, and provide
a result comprising the position of the most significant bit.

The alternative programmable processor may further com-
prise a control unit configured to manipulate a first and a
second validity information corresponding to first and second
catenated data, wherein after completion of an instruction
specifying a memory address of first catenated data, the con-
tents of second catenated data are provided to the first
memory system in place of first catenated data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system level diagram showing the functional
blocks of a system in accordance with an exemplary embodi-
ment of the present invention.

FIG. 2 is a matrix representation of a wide matrix multiply
in accordance with an exemplary embodiment of the present
invention.

FIG. 3 is a further representation of a wide matrix multiple
in accordance with an exemplary embodiment of the present
invention.

FIG. 4 is a system level diagram showing the functional
blocks of a system incorporating a combined Simultaneous

US 9,229,713 B2

9

Multi Threading and Decoupled Access from Execution pro-
cessor in accordance with an exemplary embodiment of the
present invention.

FIG. 5 illustrates a wide operand in accordance with an
exemplary embodiment of the present invention.

FIG. 6 illustrates an approach to specified decoding in
accordance with an exemplary embodiment of the present
invention.

FIG. 7 illustrates in operational block form a Wide Func-
tion Unit in accordance with an exemplary embodiment of the
present invention.

FIG. 8 illustrates in flow diagram form the Wide Micro-
cache control function in accordance with an exemplary
embodiment of the present invention.

FIG. 9 illustrates Wide Microcache data structures in
accordance with an exemplary embodiment of the present
invention.

FIGS. 10 and 11 illustrate a Wide Microcache control in
accordance with an exemplary embodiment of the present
invention.

FIGS. 12A-12F illustrate a Wide Switch instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 13A-13G illustrate a Wide Translate instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 14A-14G illustrate a Wide Multiply Matrix instruc-
tion in accordance with an exemplary embodiment of the
present invention.

FIGS. 15A-15H illustrate a Wide Multiply Matrix Extract
instruction in accordance with an exemplary embodiment of
the present invention.

FIGS. 16A-16G illustrate a Wide Multiply Matrix Extract
Immediate instruction in accordance with an exemplary
embodiment of the present invention.

FIGS.17A-17G illustrate a Wide Multiply Matrix Floating
point instruction in accordance with an exemplary embodi-
ment of the present invention.

FIGS. 18A-18F illustrate a Wide Multiply Matrix Galois
instruction in accordance with an exemplary embodiment of
the present invention.

FIGS. 19A-19H illustrate an Ensemble Extract Inplace
instruction in accordance with an exemplary embodiment of
the present invention.

FIGS. 20A-20L illustrate an Ensemble Extract instruction
in accordance with an exemplary embodiment of the present
invention.

FIGS. 21A-21H illustrate a System and Privileged Library
Calls in accordance with an exemplary embodiment of the
present invention.

FIGS. 22A-22C illustrate an Ensemble Scale-Add Float-
ing-point instruction in accordance with an exemplary
embodiment of the present invention.

FIGS. 23A-23E illustrate a Group Boolean instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 24A-24C illustrate a Branch Hint instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 25A-25D illustrate an Ensemble Sink Floating-
point instruction in accordance with an exemplary embodi-
ment of the present invention.

FIGS. 26 A-26E illustrate Group Add instructions in accor-
dance with an exemplary embodiment of the present inven-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIGS. 27A-27E illustrate Group Set instructions and
Group Subtract instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 28A-28K illustrate Ensemble Convolve, Ensemble
Divide, Ensemble Multiply, and Ensemble Multiply Sum
instructions in accordance with an exemplary embodiment of
the present invention.

FIG. 29 illustrates exemplary functions that are defined for
use within the detailed instruction definitions in other sec-
tions.

FIGS. 30A-30E illustrate Ensemble Floating-Point Add,
Ensemble Floating-Point Divide, and Ensemble Floating-
Point Multiply instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 31A-31C illustrate Ensemble Floating-Point Sub-
tract instructions in accordance with an exemplary embodi-
ment of the present invention.

FIGS. 32A-32E illustrate Crossbar Compress, Expand,
Rotate, and Shift instructions in accordance with an exem-
plary embodiment of the present invention.

FIGS. 33A-33G illustrate Extract instructions in accor-
dance with an exemplary embodiment of the present inven-
tion.

FIGS. 34A-34H illustrate Shuffle instructions in accor-
dance with an exemplary embodiment of the present inven-
tion.

FIGS. 35A-35B illustrate Wide Solve Galois instructions
in accordance with an exemplary embodiment of the present
invention.

FIGS. 36A-36B illustrate Wide Transform Slice instruc-
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 37A-37M illustrate Wide Convolve Extract instruc-
tions in accordance with an exemplary embodiment of the
present invention.

FIG. 38 illustrates Transfers Between Wide Operand
Memories in accordance with an exemplary embodiment of
the present invention.

FIGS. 39A-39] illustrate operations in accordance with an
exemplary embodiment of the present invention.

FIGS. 40A-40C illustrate Instruction Fetch, Perform
Exception, and Instruction Decode in accordance with an
exemplary embodiment of the present invention.

FIGS. 41 A-41C illustrate a Always Reserved instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 42A-42C illustrate Address instructions in accor-
dance with an exemplary embodiment of the present inven-
tion.

FIGS. 43A-43C illustrate Address Compare instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 44 A-44C illustrate Address Compare Floating Point
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 45A-45C illustrate Address Copy Immediate
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 46A-46C illustrate Address Immediate instructions
in accordance with an exemplary embodiment of the present
invention.

FIGS. 47A-47C illustrate Address Immediate Reversed
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 48A-48C illustrate Address Immediate Set instruc-
tions in accordance with an exemplary embodiment of the
present invention.

US 9,229,713 B2

11

FIGS. 49A-49C illustrate Address Reversed instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 50A-50C illustrate Address Set instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 51A-51C illustrate Address Set Floating Point
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 52A-52C illustrate an Address Shift Left Add
instruction in accordance with an exemplary embodiment of
the present invention.

FIGS. 53A-53C illustrate an Address Shift Left Immediate
Add instruction in accordance with an exemplary embodi-
ment of the present invention.

FIGS. 54A-54C illustrate Address Shift Immediate
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 55A-55C illustrate an Address Ternary instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 56A-56C illustrate a Branch instruction in accor-
dance with an exemplary embodiment of the present inven-
tion.

FIGS. 57A-57C illustrate a Branch Back instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 58A-58C illustrate a Branch Barrier instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 59A-59C illustrate Branch Conditional instructions
in accordance with an exemplary embodiment of the present
invention.

FIGS. 60A-60C illustrate Branch Conditional Floating-
Point instructions in accordance with an exemplary embodi-
ment of the present invention.

FIGS. 61A-61C illustrate Branch Conditional Visibility
Floating-Point instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 62A-62C illustrate a Branch Down instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 63A-63C illustrate a Branch Halt instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 64A-64C illustrate a Branch Hint Immediate
instruction in accordance with an exemplary embodiment of
the present invention.

FIGS. 65A-65C illustrate a Branch Immediate instructions
in accordance with an exemplary embodiment of the present
invention.

FIGS. 66A-66C illustrate a Branch Immediate Link
instruction in accordance with an exemplary embodiment of
the present invention.

FIGS. 67A-67C illustrate a Branch Link instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 68A-68C illustrate Link instructions in accordance
with an exemplary embodiment of the present invention.

FIGS. 69A-69C illustrate Load Immediate instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 70A-70C illustrate Store instructions in accordance
with an exemplary embodiment of the present invention.

FIGS. 71A-71C illustrate Store Double Compare Swap
instructions in accordance with an exemplary embodiment of
the present invention.

15

30

40

45

50

12

FIGS. 72A-72C illustrate Store Immediate instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 73A-73C illustrate Store Immediate Inplace instruc-
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 74A-74C illustrate Store Inplace instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 75A-75C illustrate Group Add Halve instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 76 A-76C illustrate Group Compare instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 77A-77C illustrate Group Compare Floating-point
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 78A-78C illustrate Group Copy Immediate instruc-
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 79A-79C illustrate Group Immediate instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 80A-80C illustrate Group Immediate Reversed
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 81A-81C illustrate Group Inplace instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 82A-82C illustrate Group Reversed Floating-point
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 83A-83C illustrate Group Shift Left Immediate Add
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 84A-84C illustrate Group Shift Left Immediate
Subtract instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 85A-85C illustrate Group Subtract Halve instruc-
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 86A-86C illustrate a Group Ternary instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 87A-87F illustrate Crossbar Field instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 88A-88E illustrate Crossbar Field Inplace instruc-
tions in accordance with an exemplary embodiment of the
present invention.

FIGS. 89A-89C illustrate Crossbar Inplace instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 90A-90C illustrate Crossbar Short Immediate
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 91A-91C illustrate Crossbar Short Immediate
Inplace instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 92A-92C illustrate a Crossbar Swizzle instruction in
accordance with an exemplary embodiment of the present
invention.

FIGS. 93A-93D illustrate a Crossbar Ternary instruction in
accordance with an exemplary embodiment of the present
invention.

US 9,229,713 B2

13

FIGS. 94A-94G illustrate Ensemble Extract Immediate
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 95A-95] illustrate Ensemble Extract Immediate
Inplace instructions in accordance with an exemplary
embodiment of the present invention.

FIGS. 96A-96E illustrate Ensemble Inplace Floating-point
instructions in accordance with an exemplary embodiment of
the present invention.

FIGS. 97A-97D illustrate Ensemble Ternary instructions
in accordance with an exemplary embodiment of the present
invention.

FIGS. 98A-98C illustrate Ensemble Unary instructions in
accordance with an exemplary embodiment of the present
invention.

FIGS. 99A-99C illustrate Ensemble Unary Floating-point
instructions in accordance with an exemplary embodiment of
the present invention.

FIG. 100 is a block diagram showing the organization of
the memory management system in accordance with an
exemplary embodiment of the present invention.

FIG. 101 illustrates a pipeline organization in accordance
with an exemplary embodiment of the present invention.

FIG. 102 is a system-level diagram showing a memory
pipeline in accordance with an exemplary embodiment of the
present invention.

FIG. 103 illustrates an expected rate at which memory
requests are serviced in accordance with an exemplary
embodiment of the present invention.

FIG. 104 illustrates an expected rate at which memory
requests are serviced in accordance with an exemplary
embodiment of the present invention.

FIG. 105 is a pinout diagram in accordance with an exem-
plary embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION
INTRODUCTION

In various embodiments of the invention, a computer pro-
cessor architecture, referred to here as Micro Unity’s Zeus
Architecture is presented. MicroUnity’s Zeus Architecture
describes general-purpose processor, memory, and interface
subsystems, organized to operate at the enormously high
bandwidth rates required for broadband applications.

The Zeus processor performs integer, floating point, signal
processing and non-linear operations such as Galois field,
table lookup and bit switching on data sizes from 1 bit to 128
bits. Group or SIMD (single instruction multiple data) opera-
tions sustain external operand bandwidth rates up to 512 bits
(i.e., up to four 128-bit operand groups) per instruction even
on data items of small size. The processor performs ensemble
operations such as convolution that maintain full intermediate
precision with aggregate internal operand bandwidth rates up
to 20,000 bits per instruction. The processor performs wide
operations such as crossbar switch, matrix multiply and table
lookup that use caches embedded in the execution units them-
selves to extend operands to as much as 32768 bits. All
instructions produce at most a single 128-bit general register
result, source at most three 128-bit general registers and are
free of side effects such as the setting of condition codes and
flags. The instruction set design carries the concept of stream-
lining beyond Reduced Instruction Set Computer (RISC)
architectures, to simplify implementations that issue several
instructions per machine cycle.

The Zeus memory subsystem provides 64-bit virtual and
physical addressing for UNIX, Mach, and other advanced OS
environments. Separate address instructions enable the divi-
sion of the processor into decoupled access and execution

15

20

25

30

35

40

45

14

units, to reduce the effective latency of memory to the pipe-
line. The Zeus cache supplies the high data and instruction
issue rates of the processor, and supports coherency primi-
tives for scaleable multiprocessors. The memory subsystem
includes mechanisms for sustaining high data rates not only
in block transfer modes, but also in non-unit stride and scat-
tered access patterns.

The Zeus interface subsystem is designed to match indus-
try-standard protocols and pin-outs. In this way, Zeus can
make use of existing infrastructure for building low-cost sys-
tems. The interface subsystem is modular, and can be
replaced with appropriate protocols and pin-outs for lower-
cost and higher-performance systems.

The goal of the Zeus architecture is to integrate these
processor, memory, and interface capabilities with optimal
simplicity and generality. From the software perspective, the
entire machine state consists of a program counter, a single
bank of 64 general-purpose 128-bit general registers, and a
linear byte-addressed shared memory space with mapped
interface registers. All interrupts and exceptions are precise,
and occur with low overhead.

Examples discussed herein are intended for Zeus software
and hardware developers alike, and defines the interface at
which their designs must meet. Zeus pursues the most effi-
cient tradeoffs between hardware and software complexity by
making all processor, memory, and interface resources
directly accessible to high-level language programs.

COMMON ELEMENTS

Notation
The descriptive notation used in this document is summa-
rized in the table below:

X+y two’s complement addition of x and y. Result is the same size
as the operands, and operands must be of equal size.

X-y two’s complement subtraction of y from x. Result is the same
size as the operands, and operands must be of equal size.

x*y two’s complement multiplication of x and y. Result is the same
size as the operands, and operands must be of equal size.

x/y two’s complement division of x by y. Result is the same size
as the operands, and operands must be of equal size.

x &y bitwise and of x and y. Result is same size as the operands,
and operands must be of equal size.

Xy bitwise or of x and y. Result is same size as the operands,
and operands must be of equal size.

x y bitwise exclusive-of of x and y. Result is same size as the
operands, and operands must be of equal size.

~X bitwise inversion of x. Result is same size as the operand.

X=y two’s complement equality comparison between x and y. Result
is a single bit, and operands must be of equal size.

X=y two’s complement inequality comparison between x and y.
Result is a single bit, and operands must be of equal size.

X<y two’s complement less than comparison between x and y. Result
is a single bit, and operands must be of equal size.

X=y two’s complement greater than or equal comparison between x
and y. Result is a single bit, and operands must be of equal size.

vx floating-point square root of x

x|y concatenation of bit field x to left of bit field y

Y binary digit x repeated, concatenated y times. Size of result is y.

X, extraction of bit y (using little-endian bit numbering) from
value x. Result is a single bit.

X, ... extraction of bit field formed from bits y through z of value
X. Size of result is -z + 1; if z >y, result is an empty string,

x?y:Z value of y, if X is true, otherwise value of z. Value of x is a
single bit.

X <y bitwise assignment of x to value of y

Xy subfield of structured bitfield x

Sn signed, two’s complement, binary data format of n bytes

Un unsigned binary data format of n bytes

Fn floating-point data format of n bytes

US 9,229,713 B2

15

Bit Ordering

The ordering of bits in this document is always little-
endian, regardless of the ordering of bytes within larger data
structures. Thus, the least-significant bit of a data structure is
always labeled 0 (zero), and the most-significant bit is labeled
as the data structure size (in bits) minus one.

Memory

Zeus memory is an array of 2%* bytes, without a specified
byte ordering, which is physically distributed among various
components.

byte 0
byte 1
byte 2

byte 264-1
8

Byte
A byte is a single element of the memory array, consisting
of 8 bits:

7 0
8

Byte ordering

Larger data structures are constructed from the concatena-
tion of bytes in either little-endian or big-endian byte order-
ing. A memory access of a data structure of size s at address
iis formed from memory bytes at addresses i through i+s-1.
Unless otherwise specified, there is no specific requirement of
alignment: it is not generally required that i be a multiple of's.
Aligned accesses are preferred whenever possible, however,
as they will often require one fewer processor or memory
clock cycle than unaligned accesses.

With little-endian byte ordering, the bytes are arranged as:

s*8-1 s*8-8 15 87 0
| byte i+s-1 | | byte i+1|
8 8 8

byte i |

With big-endian byte ordering, the bytes are arranged as:

s*8-1 s*8-8 s*8-9 s*8-16 7 0
| byte i | byte i+1 | | byte i+s-1 |
8 8 8

Zeus memory is byte-addressed, using either little-endian
or big-endian byte ordering. For consistency with the bit
ordering, and for compatibility with x86 processors, Zeus
uses little-endian byte ordering when an ordering must be
selected. Zeus load and store instructions are available for
both little-endian and big-endian byte ordering. The selection
of byte ordering is dynamic, so that little-endian and big-
endian processes, and even data structures within a process,
can be intermixed on the processor.

5

10

15

20

25

30

35

40

45

50

60

65

16

Memory read/load semantics

Zeus memory, including memory-mapped registers, must
conform to the following requirements regarding side-effects
of'read or load operations:

A memory read must have no side-effects on the contents
of the addressed memory nor on the contents of any other
memory.

Memory write/store semantics

Zeus memory, including memory-mapped registers, must
conform to the following requirements regarding side-effects
of'read or load operations:

A memory write must affect the contents of the addressed
memory so that a memory read of the addressed memory
returns the value written, and so that a memory read of a
portion of the addressed memory returns the appropriate por-
tion of the value written.

A memory write may affect or cause side-effects on the
contents of memory not addressed by the write operation,
however, a second memory write of the same value to the
same address must have no side-effects on any memory;
memory write operations must be idempotent.

Zeus store instructions that are weakly ordered may have
side-effects on the contents of memory not addressed by the
store itself; subsequent load instructions which are also
weakly ordered may or may not return values which reflect
the side-effects.

Data

Zeus provides eight-byte (64-bit) virtual and physical
address sizes, and eight-byte (64-bit) and sixteen-byte (128-
bit) data path sizes, and uses fixed-length four-byte (32-bit)
instructions. Arithmetic is performed on two’s-complement
or unsigned binary and ANSI/IEEE standard 754-1985 con-
forming binary floating-point number representations.

Fixed-point Data
Bit
A bit is a primitive data element:

Peck
A peck is the catenation of two bits:

1 0

2

Nibble
A nibble is the catenation of four bits:

3 0

4

Byte
A byte is the catenation of eight bits, and is a single element
of the memory array:

US 9,229,713 B2

17
7 0
8

Doublet

A doublet is the catenation of 16 bits, and is the catenation
of two bytes:

| doublet
16

Quadlet

A quadlet is the catenation of 32 bits, and is the catenation
of four bytes:

31 0
| Quadlet
32

Octlet

An octlet is the catenation of 64 bits, and is the catenation
of eight bytes:

63 32
| octletss. 32 |
32
31 0
| octlets| g |
32

Hexlet

A hexlet is the catenation of 128 bits, and is the catenation
of sixteen bytes:

127 96
| hexlet>7 96 |
32
95 64
| hexletos 64 |
32
63 32
| hexlets 32 |
32
31 0
| hexlets; o |
32

Triclet

A triclet is the catenation of 256 bits, and is the catenation
of thirty-two bytes:

255

| tricletyss. 224
32

224

10

15

20

30

35

40

45

50

55

60

65

18

-continued
223 192
| tricletyys. 192 |
32

191 160
| tricletior. 160 |
32

159 128

| triclet|s 128 |
32

127 96
| triclet 2706 |
32

95 64
| tricletos 64 |
32

63 32
| tricletss 32 |
32
31 0
| triclets; o |
32

Address

Zeus addresses, both virtual addresses and physical
addresses, are octlet quantities.

Floating-point Data

Zeus’s floating-point formats are designed to satisfy ANSI/
IEEE standard 754-1985: Binary Floating-point Arithmetic.
Standard 754 leaves certain aspects to the discretion of imple-
menters: additional precision formats, encoding of quiet and
signaling NaN values, details of production and propagation
of quiet NaN values. These aspects are detailed below.

Zeus adds additional half-precision and quad-precision
formats to standard 754’s single-precision and double-preci-
sion formats. Zeus’s double-precision satisfies standard
754’s precision requirements for a single-extended format,
and Zeus’s quad-precision satisfies standard 754’s precision
requirements for a double-extended format.

Each precision format employs fields labeled s (sign), e
(exponent), and f (fraction) to encode values that are (1) NaN:
quiet and signaling, (2) infinities: (-1)*”, (3) normalized
numbers: (-1)2"%%5(1 1), (4) denormalized numbers:
(=1Y=2°=%25(0 1), and (5) zero: (=1)0.

Quiet NaN values are denoted by any sign bit value, an
exponent field of all one bits, and a non-zero fraction with the
most significant bit set. Quiet NaN values generated by
default exception handling of standard operations have a zero
sign bit, an exponent field of all one bits, a fraction field with
the most significant bit set, and all other bits cleared.

Signaling NaN values are denoted by any sign bit value, an
exponent field of all one bits, and a non-zero fraction with the
most significant bit cleared.

Infinite values are denoted by any sign bit value, an expo-
nent field of all one bits, and a zero fraction field.

Normalized number values are denoted by any sign bit
value, an exponent field that is not all one bits or all zero bits,
and any fraction field value. The numeric value encoded is
(=1)s2"%25(1 1). The bias is equal the value resulting from
setting all but the most significant bit of the exponent field,
half: 15, single: 127, double: 1023, and quad: 16383.

Denormalized number values are denoted by any sign bit
value, an exponent field that is all zero bits, and a non-zero
fraction field value. The numeric value encoded is
(_ 1)'\sz'\l-bias(O.f).

US 9,229,713 B2

19

Zero values are denoted by any sign bit value, and exponent
field that is all zero bits, and a fraction field that is all zero bits.
The numeric value encoded is (-1)0. The distinction
between +0 and -0 is significant in some operations.

Half-precision Floating-point

Zeus half precision uses a format similar to standard 754°s
requirements, reduced to a 16-bit overall format. The format
contains sufficient precision and exponent range to hold a
12-bit signed integer.

15 14 109 0
| s e f
1 5 10

Single-precision Floating-point
Zeus single precision satisfies standard 754’s requirements
for “single.”

31 30 23 22 0
s e f
1 8 23

Double-precision Floating-point
Zeus double precision satisfies standard 754’s require-
ments for “double.”

63 62 52 51 32
s e f51.32 |
1 11 20
31 0
| 131.0 |
32

Quad-precision Floating-point

Zeus quad precision satisfies standard 754’s requirements
for “double extended,” but has additional fraction precision to
use 128 bits.

127 126 112 111 96
s e f111..96 |
1 15 16
95 64
| fo5..64 |
32
63 32
| f63..32 |
32
31 0
| 31,0 |
32

Complex Data

Zeus instructions include operations on pairs of data values
that represent complex numerical values of the form (a+b 1).
When contained in general registers, the paired values are
always arranged with the real part (a) in a less-significant
location (to the right) and the imaginary part (b 1) in a more-
significant location (to the left).

When these paired values are contained in memory, a little-
endian load or store transfers these values to memory in a
form where the real part is at a lower address and the imagi-

10

15

20

25

30

35

45

50

55

60

65

20

nary part is at a higher address. A big-endian load or store
transfers these values to memory in a form where the real part
is at a higher address and the imaginary part is at a lower
address, which is different from the little-endian case and
may be considered unusual.

The ordering of real and imaginary parts is usually of no
consequence when performing addition or subtraction opera-
tions, and in fact, the Zeus instruction set has no special
facilities for addition or subtraction of complex data. If the
arrangement of real and imaginary parts does not match the
desired format in memory, an X.SWIZZLE instruction can
swap the positions of the real and imaginary values in a
general register for the operands and the results.

A shortcut for a complex multiply operation can be
observed: if the position of the real and imaginary parts are
reversed in both operands, the result that is computed will
have the imaginary part of the result to the left (more signifi-
cant) and the negative of the real part to the right (less sig-
nificant). A G.XOR can invert the sign bit (for complex float-
ing-point), or the real part of the result (for complex integer).
For the complex integer a G.ADD then transforms the ones-
complement to a twos-complement. An X.SWIZZLE instruc-
tion can swap the result into the reversed order matching the
operand order. The results transformed by the above is then in
condition to be written back to memory in the reversed fash-
ion.

Zeus instructions have no direct support for complex val-
ues in a polar (r,0) representation.

CONFORMANCE

To ensure that Zeus systems may freely interchange data,
user-level programs, system-level programs and interface
devices, the Zeus system architecture reaches above the pro-
cessor level architecture.

Optional Areas

Optional areas include:

Number of processor threads

Size of first-level cache memories

Existence of a second-level cache

Size of second-level cache memory

Size of system-level memory

Existence of certain optional interface device interfaces

Upward-compatible Modifications

Additional devices and interfaces, not covered by this stan-
dard may be added in specified regions of the physical
memory space, provided that system reset places these
devices and interfaces in an inactive state that does not inter-
fere with the operation of software that runs in any conform-
ant system. The software interface requirements of any such
additional devices and interfaces must be made as widely
available as this architecture specification.

Unrestricted Physical Implementation

Nothing in this specification should be construed to limit
the implementation choices of the conforming system beyond
the specific requirements stated herein. In particular, a com-
puter system may conform to the Zeus System Architecture
while employing any number of components, dissipate any
amount of heat, require any special environmental facilities,
or be of any physical size.

ZEUS PROCESSOR

MicroUnity’s Zeus processor provides the general-pur-
pose, high-bandwidth computation capability of the Zeus
system. Zeus includes high-bandwidth data paths, general
register files, and a memory hierarchy. Zeus’s memory hier-

US 9,229,713 B2

21

archy includes on-chip instruction and data memories,
instruction and data caches, a virtual memory facility, and
interfaces to external devices. Zeus’s interfaces in the initial
implementation are solely the “Super Socket 77 bus, but other
implementations may have different or additional interfaces.

Architectural Framework

The Zeus architecture defines a compatible framework for
a family of implementations with a range of capabilities. The
following implementation-defined parameters are used in the
rest of the document in boldface. The value indicated is for
one implementation.

Parameter Interpretation Value Range of legal values

T number of execution threads 4 1=T=31

CE log, cache blocks in first-level 9 0=CEs=3l
cache

CS log, cache blocks in first-level 2 0=CS=4
cache set

CT existence of dedicated tags in 1 0=CT=1
first-level cache

LE log, entries in local TB 0 0=LE=3

LB Local TB based on base register 1 0=IB=l1

GE log, entries in global TB 7 0=GE=<15

GT log,, threads which share a global 1 0=GT=3

B

Interfaces and Block Diagram

The first implementation of Zeus uses “socket 7 protocols
and pinouts.

Instruction

Assembler Syntax

Instructions are specified to Zeus assemblers and other
code tools (assemblers) in the syntax of an instruction mne-
monic (operation code), then optionally white space (blanks
or tabs) followed by a list of operands.

The instruction mnemonics listed in this specification are
in upper case (capital) letters, assemblers accept either upper
case or lower case letters in the instruction mnemonics. In this
specification, instruction mnemonics contain periods () to
separate elements to make them easier to understand; assem-
blers ignore periods within instruction mnemonics. The
instruction mnemonics are designed to be parsed uniquely
without the separating periods.

If the instruction produces a general register result, this
operand is listed first. Following this operand, if there are one
or more source operands, is a separator which may be a
comma (,”), equal (“="), or at-sign (“@”). The equal sepa-
rates the result operand from the source operands, and may
optionally be expressed as a comma in assembler code. The
at-sign indicates that the result operand is also a source oper-
and, and may optionally be expressed as a comma in assem-
bler code. Ifthe instruction specification has an equal-sign, an
at-sign in assembler code indicates that the result operand
should be repeated as the first source operand (for example,
“A.ADD.Ir4 @5” is equivalent to “A.ADD.Ir4=r4,5”). Com-
mas always separate the remaining source operands.

The result and source operands are case-sensitive; upper
case and lower case letters are distinct. General register oper-
ands are specified by the names rO (or r00) through r63 (a

“r” immediately followed by a one or two digit

9

lower case “r
number from 0 to 63), or by the special designations of “Ip”
for 6‘r0,” 6‘dp” for 6‘rl, k2 6‘fp” for 6‘r62,” and “Sp” for
“r63”Integer-valued operands are specified by an optional
sign (=) or (+) followed by a number and assemblers gener-
ally accept a variety of integer-valued expressions.

10

20

25

30

35

40

45

50

55

60

65

22

Instruction Structure

A Zeus instruction is specifically defined as a four-byte
structure with the little endian ordering shown below. It is
different from the quadlet defined above because the place-
ment of instructions into memory must be independent of the
byte ordering used for data structures. Instructions must be
aligned on four-byte boundaries; in the diagram below, i must
be a multiple of 4.

31 24 23 16 15 8 7 0
byte i+3 byte i+3 byte i+3 byte i

8 8 8 8

Gateway

A Zeus gateway is specifically defined as an 8-byte struc-
ture with the little-endian ordering shown below. A gateway
contains a code address used to securely invoke a system call
or procedure at a higher privilege level. Gateways are marked
by protection information specified in the TB. Gateways must
be aligned on 8-byte boundaries in the diagram below, i must
be a multiple of 8.

63 56 55 48 47 40 39 32
[byeit7 | byeiv6 | byeirs | byeird |
8 8 8 8
31 24 23 16 15 8 7 0
[byteir3 | byteir3 | byter3 [bytei |
8 8 8 8

The gateway contains two data items within its structure, a
code address and a new privilege level:

63 21 0
| code address | pl |
62 2

The virtual memory system can be used to designate a
region of memory as containing gateways. Other data may be
placed within the gateway region, provided that if an attempt
is made to use the additional data as a gateway, that security
cannot be violated. For example, 64-bit data or stack pointers
which are aligned to at least 4 bytes and are in little-endian
byte order have pl=0, so that the privilege level cannot be
raised by attempting to use the additional data as a gateway.

User State

The user state consists of hardware data structures that are
accessible to all conventional compiled code. The Zeus user
state is designed to be as regular as possible, and consists only
of the general registers, the program counter, and virtual
memory. There are no specialized registers for condition
codes, operating modes, rounding modes, integer multiply/
divide, or floating-point values.

General registers

Zeus user state includes 64 general registers. All are iden-
tical; there is no dedicated zero-valued general register, and
there are no dedicated floating-point general registers.

US 9,229,713 B2

23
127 0
REG[0]
REG[1]
REG[2] 5
REG[62] 0
REG[63]
8
Some Zeus instructions have 32-bit or 64-bit general reg- s
ister operands. These operands are sign-extended to 128 bits
when written to the general register file, and the low-order bits
are chosen when read from the general register file.
Definition
20
def val <= RegRead(rn, size)
val <= REG[m];..; o
enddef
def RegWrite(rn, size, val)
REG(rn] < valsize-1128-size || valsize-1..0 5
enddef
Program Counter
The program counter contains the address of the currently
executing instruction. This register is implicitly manipulated 30
by branch instructions, and read by branch instructions that
save a return address in a general register.
63 2 10 35
| ProgramCounter | 0 |
62 2
Privilege Level 2
The privilege level register contains the privilege level of
the currently executing instruction. This register is implicitly
manipulated by branch gateway and branch down instruc-
tions, and read by branch gateway instructions that save a
return address in a general register. 45
10
2 50
Program Counter and Privilege Level
The program counter and privilege level may be packed
into a single octlet. This combined data structure is saved by 55
the Branch Gateway instruction and restored by the Branch
Down instruction.
63 2 10
| ProgramCounter | pl | 60
62 2
System state
The system state consists of the facilities not normally used 65

by conventional compiled code. These facilities provide
mechanisms to execute such code in a fully virtual environ-

24

ment. All system state is memory mapped, so that it can be
manipulated by compiled code.

Fixed-point

Zeus provides load and store instructions to move data
between memory and the general registers, branch instruc-
tions to compare the contents of general registers and to
transfer control from one code address to another, and arith-
metic operations to perform computation on the contents of
general registers, returning the result to general registers.

Load and Store

The load and store instructions move data between
memory and the general registers. When loading data from
memory into a general register, values are zero-extended or
sign-extended to fill the general register. When storing data
from a general register into memory, values are truncated on
the left to fit the specified memory region.

Load and store instructions that specify a memory region of
more than one byte may use either little-endian or big-endian
byte ordering: the size and ordering are explicitly specified in
the instruction. Regions larger than one byte may be either
aligned to addresses that are an even multiple of the size of the
region or of unspecified alignment: alignment checking is
also explicitly specified in the instruction.

Load and store instructions specify memory addresses as
the sum of a base general register and the product of the size
of the memory region and either an immediate value or
another general register. Scaling maximizes the memory
space which can be reached by immediate offsets from a
single base general register, and assists in generating memory
addresses within iterative loops. Alignment of the address can
be reduced to checking the alignment of the first general
register.

Theload and store instructions are used for fixed-point data
as well as floating-point and digital signal processing data;
Zeus has a single bank of general registers for all data types.

Swap instructions provide multithread and multiprocessor
synchronization, using indivisible operations: add-swap,
compare-swap, multiplex-swap, and double-compare-swap.
A store-multiplex operation provides the ability to indivisibly
write to a portion of an octlet. These instructions always
operate on aligned octlet data, using either little-endian or
big-endian byte ordering.

Branch

The fixed-point compare-and-branch instructions provide
all arithmetic tests for equality and inequality of signed and
unsigned fixed-point values. Tests are performed either
between two operands contained in general registers, or on
the bitwise and of two operands. Depending on the result of
the compare, either a branch is taken, or not taken. A taken
branch causes an immediate transfer of the program counter
to the target of the branch, specified by a 12-bit signed offset
from the location of the branch instruction. A non-taken
branch causes no transfer; execution continues with the fol-
lowing instruction.

Other branch instructions provide for unconditional trans-
fer of control to addresses too distant to be reached by a 12-bit
offset, and to transfer to a target while placing the location
following the branch into a general register. The branch
through gateway instruction provides a secure means to
access code at a higher privilege level, in a form similar to a
normal procedure call.

Addressing Operations

A subset of general fixed-point arithmetic operations is
available as addressing operations. These include add, sub-
tract, Boolean, and simple shift operations. These addressing
operations may be performed at a point in the Zeus processor
pipeline so that they may be completed prior to or in conjunc-

US 9,229,713 B2

25

tion with the execution of load and store operations in a
“superspring” pipeline in which other arithmetic operations
are deferred until the completion of load and store operations.

Execution Operations

Many of the operations used for Digital Signal Processing
(DSP), which are described in greater detail below, are also
used for performing simple scalar operations. These opera-
tions perform arithmetic operations on values of 8-, 16-, 32-,
64-, or 128- bit sizes, which are right-aligned in general
registers. These execution operations include the add, sub-
tract, boolean and simple shift operations which are also
available as addressing operations, but further extend the
available set to include three-operand add/subtract, three-
operand boolean, dynamic shifts, and bit-field operations.

Floating-point

Zeus provides all the facilities mandated and recom-
mended by ANSI/IEEE standard 754-1985: Binary Floating-
point Arithmetic, with the use of supporting software.

Branch Conditionally

The floating-point compare-and-branch instructions pro-
vide all the comparison types required and suggested by the
IEEE floating-point standard. These floating-point compari-
sons augment the usual types of numeric value comparisons
with special handling for NaN (not-a-number) values. A NaN
value compares as “unordered” with respect to any other
value, even that of an identical NaN value.

Zeus floating-point compare-branch instructions do not
generate an exception on comparisons involving quiet or
signaling NaN values. If such exceptions are desired, they can
be obtained by combining the use of a floating-point com-
pare-set instruction, with either a floating-point compare-
branch instruction on the floating-point operands or a fixed-
point compare-branch on the set result.

Because the less and greater relations are anti-commuta-
tive, one of each relation that differs from another only by the
replacement of an [with a G in the code can be removed by
reversing the order of the operands and using the other code.
Thus, an L relation can be used in place of a G relation by
swapping the operands to the compare-branch or compare-set
instruction.

No instructions are provided that branch when the values
are unordered. To accomplish such an operation, use the
reverse condition to branch over an immediately following
unconditional branch, or in the case of an if-then-else clause,
reverse the clauses and use the reverse condition.

The E relation can be used to determine the unordered
condition of a single operand by comparing the operand with
itself.

The following floating-point compare-branch relations are
provided as instructions:

Branch taken if values compare as: Exception if
Mnemonic Unord- unord-
code C-like ered Greater Less Equal ered invalid
E == F F F T no no
LG <> F T T F no no
L < F F T F no no
GE >= F T F T no no

Compare-set
The compare-set floating-point instructions provide all the
comparison types supported as branch instructions. Zeus

20

25

30

35

40

45

50

60

65

26

compare-set floating-point instructions may optionally gen-
erate an exception on comparisons involving quiet or signal-
ing NaNs.

The following floating-point compare-set relations are pro-
vided as instructions:

Result if values compare as: Exception if
Mnemonic Unord- unord-
code C-like ered Greater Less Equal ered invalid
E == F F F T no no
LG <> F T T F no no
L < F F T F no no
GE >= F T F T no no
EX == F F F T no yes
LGX <> F T T F no yes
L.X < F F T F yes yes
GEX <= F T F T yes yes
Arithmetic Operations

The basic operations supported in hardware are floating-
point add, subtract, multiply, divide, square root and conver-
sions among floating-point formats and between floating-
point and binary integer formats.

Software libraries provide other operations required by the
ANSV/IEEE floating-point standard.

The operations explicitly specify the precision of the
operation, and round the result (or check that the result is
exact) to the specified precision at the conclusion of each
operation. Each of the basic operations splits operand general
registers into symbols of the specified precision and performs
the same operation on corresponding symbols.

In addition to the basic operations, Zeus performs a variety
of operations in which one or more products are summed to
each other and/or to an additional operand. The instructions
include a fused multiply-add (E.MUL.ADD.F), convolve
(E.CON.F), matrix multiply (E.MUL.MAT.F), and scale-add
(E.SCAL.ADD.F).

The results of these operations are computed as if the
multiplies are performed to infinite precision, added as if in
infinite precision, then rounded only once. Consequently,
these operations perform these operations with no rounding
of intermediate results that would have limited the accuracy
of the result.

Rounding and exceptions

Rounding is specified within the instructions explicitly to
avoid explicit state registers for a rounding mode. Similarly,
the instructions explicitly specify how standard exceptions
(invalid operation, division by zero, overflow, underflow and
inexact) are to be handled (U.S. Pat. No. 5,812,439 describes
this “Technique of incorporating floating point information
into processor instructions,”).

When no rounding is explicitly named by the instruction
(default), round to nearest rounding is performed, and all
floating-point exception signals cause the standard-specified
default result, rather than a trap. When rounding is explicity
named by the instruction (N: nearest, Z: zero, F: floor, C:
ceiling), the specified rounding is performed, and floating-
point exception signals other than inexact cause a floating-
point exception trap. When X (exact, or exception) is speci-
fied, all floating-point exception signals cause a floating-point
exception trap, including inexact.

This technique assists the Zeus processor in executing
floating-point operations with greater parallelism. When
default rounding and exception handling control is specified
in floating-point instructions, Zeus may safely retire instruc-

US 9,229,713 B2

27

tions following them, as they are guaranteed not to cause
data-dependent exceptions. Similarly, floating-point instruc-
tions with N, Z, F or C control can be guaranteed not to cause
data-dependent exceptions once the operands have been
examined to rule out invalid operations, division by zero,
overflow or underflow exceptions. Only floating-point
instructions with X control, or when exceptions cannot be
ruled out with N, Z, F, or C control need to avoid retiring
following instructions until the final result is generated.

ANSI/IEEE standard 754-1985 specifies information to be
given to trap handlers for the five floating-point exceptions.
The Zeus architecture produces a precise exception, (The
program counter points to the instruction that caused the
exception and all general register state is present) from which
all the required information can be produced in software, as
all source operand values and the specified operation are
available.

ANSI/IEEE standard 754-1985 specifies a set of five
“sticky-exception” bits, for recording the occurrence of
exceptions that are handled by default. The Zeus architecture
produces a precise exception for instructions with N, Z, F, or
C control for invalid operation, division by zero, overflow or
underflow exceptions and with X control for all floating-point
exceptions, from which software may arrange that corre-
sponding sticky-exception bits can be set. Execution of the
same instruction with default control will compute the default
result with round-to-nearest rounding. Most compound
operations not specified by the standard are not available with
rounding and exception controls. These compound opera-
tions provide round-to-nearest rounding and default excep-
tion handling.

NaN handling

ANSI/IEEE standard 754-1985 specifies that operations
involving a signaling NaN or invalid operation shall, if no trap
occurs and if a floating-point result is to be delivered, deliver
a quiet NaN as its result. However, it fails to specify what
quiet NaN value to deliver.

Zeus operations that produce a floating-point result and do
nottrap on invalid operations propagate signaling NaN values
from operands to results, changing the signaling NaN values
to quiet NaN values by setting the most significant fraction bit
and leaving the remaining bits unchanged. Other causes of
invalid operations produce the default quiet NaN value,
where the sign bit is zero, the exponent field is all one bits, the
most significant fraction bit is set and the remaining fraction
bits are zero bits. For Zeus operations that produce multiple
results catenated together, signaling NaN propagation or
quiet NaN production is handled separately and indepen-
dently for each result symbol.

ANSI/IEEE standard 754-1985 specifies that quiet NaN
values should be propagated from operand to result by the
basic operations, However, it fails to specify which of several
quiet NaN values to propagate when more than one operand is
aquiet NaN. In addition, the standard does not clearly specify
how quiet NaN should be propagated for the multiple-opera-
tion instructions provided in Zeus. The standard does not
specify the quiet NaN produced as a result of an operand
being a signaling NaN when invalid operation exceptions are
handled by default. The standard leaves unspecified how
quiet and signaling NaN values are propagated though format
conversions and the absolute-value, negate and copy opera-
tions. This section specifies these aspects left unspecified by
the standard.

First of all, for Zeus operations that produce multiple
results catenated together, quiet and signaling NaN propaga-
tion is handled separately and independently for each result
symbol. A quiet or signaling NaN value in a single symbol of

25

40

45

28

an operand causes only those result symbols that are depen-
dent on that operand symbol’s value to be propagated as that
quiet NaN. Multiple quiet or signaling NaN values in symbols
of'an operand which influence separate symbols of the result
are propagated independently of each other. Any signaling
NaN that is propagated has the high-order fraction bit set to
convert it to a quiet NaN.

For Zeus operations in which multiple symbols among
operands upon which a result symbol is dependent are quiet or
signaling NaNs, a priority rule will determine which NaN is
propagated. Priority shall be given to the operand that is
specified by a general register definition at a lower numbered
(little-endian) bit position within the instruction (rb has pri-
ority over rc, which has priority over rd). In the case of
operands which are catenated from two general registers,
priority shall be assigned based on the general register which
has highest priority (lower-numbered bit position within the
instruction). In the case of tie (as when the E.SCAL.ADD
scaling operand has two corresponding NaN values, or when
aE.MUL.CF operand has NaN values for both real and imagi-
nary components of a value), the value which is located at a
lower-numbered (little-endian) bit position within the oper-
and is to receive priority. The identification of a NaN as quiet
or signaling shall not confer any priority for selection—only
the operand position, though a signaling NaN will cause an
invalid operand exception.

The sign bit of NaN values propagated shall be comple-
mented if the instruction subtracts or negates the correspond-
ing operand or (but not and) multiplies it by or divides it by or
divides it into an operand which has the sign bit set, even if
that operand is another NaN. If a NaN is both subtracted and
multiplied by a negative value, the sign bit shall be propagated
unchanged.

For Zeus operations that convert between two floating-
point formats (INFLATE and DEFLATE), NaN values are
propagated by preserving the sign and the most-significant
fraction bits, except that the most-significant bit ofa signaling
NaN is set and (for DEFLATE) the least-significant fraction
bit preserved is combined, via a logical or of all fraction bits
not preserved. All additional fraction bits (for INFLATE) are
set to zero.

For Zeus operations that convert from a floating-point for-
mat to a fixed-point format (SINK), NaN values produce zero
values (maximum-likelihood estimate). Infinity values pro-
duce the largest representable positive or negative fixed-point
value that fits in the destination field. When exception traps
are enabled, NaN or Infinity values produce a floating-point
exception. Underflows do not occur in the SINK operation,
they produce -1, 0 or +1, depending on rounding controls.

For absolute-value, negate, or copy operations, NaN values
are propagated with the sign bit cleared, complemented, or
copied, respectively. Signalling NaN values cause the Invalid
operation exception, propagating a quieted NaN in corre-
sponding symbol locations (default) or an exception, as speci-
fied by the instruction.

Invalid operation

ANSI/IEEE standard 754-1985 specifies that invalid
operation shall be signaled if an operand is invalid for the
operation to be performed. Zeus operations that specify a
rounding mode trap on invalid operation. Zeus operations that
default the rounding mode (to round to nearest) do not trap on
invalid operation and produce a quiet NaN result as described
above.

Standard compliant software produces the required result
to a trap handler by following the requirements of the stan-
dard. Software may simulate untrapped invalid operation for

US 9,229,713 B2

29

other specified rounding modes by following the require-
ments of the standard for the result.

Division by zero

ANSI/IEEE standard 754-1985 specifies that division by
zero shall be signaled the divisor is zero and the dividend is a
finite non zero number. Zeus operations that specify a round-
ing mode trap on division by zero. Zeus operations that
default the rounding mode (to round to nearest) do not trap on
division by zero and produce a signed infinity result.

Standard compliant software produces the required result
to a trap handler by following the requirements of the stan-
dard. Software may simulate untrapped division by zero for
other specified rounding modes by following the require-
ments of the standard for the result.

Overflow

ANSI/IEEE standard 754-1985 specifies that overflow
shall be signaled whenever the destination format’s largest
finite number is exceeded in magnitude by what would have
been the rounded floating-point result were the exponent
range unbounded. Zeus operations that specify a rounding
mode trap on overflow. Zeus operations that default the
rounding mode (to round to nearest) do not trap on overflow
and produce a result that carries all overflows to infinity with
the sign of the intermediate result.

Standard compliant software produces the required result
to a trap handler following the requirements of the standard.
Software may simulate untrapped overtflow for other speci-
fied rounding modes by following the requirements of the
standard for the result. The standard specifies a value with the
sign of the inermediate result and specifies the largest finite
number when the overflow is in the direction away from
rounding or infinity otherwise.

Underflow

ANSI/IEEE standard 754-1985 specifies that underflow is
dependent on two correlated events: tininess and loss of accu-
racy, but allows some latitute in the definition of these con-
ditions. For Zeus operations, tininess is detected “after round-
ing,” that is when a non zero result computed as though the
exponent range were unbounded would lie between the small-
est normalized number for the format of the result. Zeus
hardware does not produce sticky exception bits, so a notion
of loss of accuracy does not apply.

Zeus operations that specify a rounding mode trap on
underflow, which is to be signaled whenever tininess occurs.
Zeus operations that default the rounding mode (to round to
nearest) do not trap on underflow and produce a result that is
zero or a denormalized number.

Standard compliant software produces the required result
to a trap handler by following the requirements of the stan-
dard. Software may simulate untrapped underflow sticky
exceptions by using the trapping operations and simulating a
result, applying whatever definition of loss of accuracy is
desired.

Inexact

ANSI/IEEE standard 754-1985 specifies that inexact shall
be signaled whenever the rounded result of an operation is not
exact or if it overflows without an overflow trap. Zeus opera-
tions that specify “exact” rounding trap on inexact. Zeus
operations that default the rounding mode (to round to near-
est) or specify a rounding mode do not trap on inexact and
produce a rounded or overflowed result.

Standard compliant software produces the required result
to a trap handler by following the requirements of the stan-
dard, delivering a rounded result.

Floating-point functions

Referring to FI1G. 39A, functions are defined for use within
the detailed instruction definitions in the following section. In

10

15

20

25

30

35

40

45

50

55

60

65

30

these functions an internal format represents infinite-preci-
sion floating-point values as a four-element structure consist-
ing of (1) s (sign bit): 0 for positive, 1 for negative, (2) t (type):
NORM, ZERO, SNAN, QNAN, INFINITY, (3) e (exponent),
and (4) f: (fraction). The mathematical interpretation of a
normal value places the binary point at the units of the frac-
tion, adjusted by the exponent: (-1)*(2"°)*f. The function F
converts a packed IEEE floating-point value into internal
format. The function PackF converts an internal format back
into IEEE floating-point format, with rounding and exception
control.

Digital Signal Processing

The Zeus processor provides a set of operations that main-
tain the fullest possible use of 128-bit data paths when oper-
ating on lower-precision fixed-point or floating-point vector
values. These operations are useful for several application
areas, including digital signal processing, image processing
and synthetic graphics. The basic goal of these operations is to
accelerate the performance of algorithms that exhibit the
following characteristics:

Low-precision arithmetic

The operands and intermediate results are fixed-point val-
ues represented in no greater than 64 bit precision. For float-
ing-point arithmetic, operands and intermediate results are of
16, 32, or 64 bit precision.

The fixed-point arithmetic operations include add, sub-
tract, multiply, divide, shifts, and set on compare.

The use of fixed-point arithmetic permits various forms of
operation reordering that are not permitted in floating-point
arithmetic. Specifically, commutativity and associativity, and
distribution identities can be used to reorder operations. Com-
pilers can evaluate operations to determine what intermediate
precision is required to get the specified arithmetic result.

Zeus supports several levels of precision, as well as opera-
tions to convert between these different levels. These preci-
sion levels are always powers of two, and are explicitly speci-
fied in the operation code.

When specified, add, subtract, and shift operations may
cause a fixed-point arithmetic exception to occur on resulting
conditions such as signed or unsigned overtlow. The fixed-
point arithmetic exception may also be invoked upon a signed
or unsigned comparison.

Sequential access to data

The algorithms are or can be expressed as operations on
sequentially ordered items in memory. Scatter-gather
memory access or sparse-matrix techniques are not required.

Where an index variable is used with a multiplier, such
multipliers must be powers of two. When the index is of the
form: nx+k, the value of n must be a power of two, and the
values referenced should have k include the majority of val-
ues in the range 0. . . n—-1. A negative multiplier may also be
used.

Vectorizable operations

The operations performed on these sequentially ordered
items are identical and independent. Conditional operations
are either rewritten to use Boolean variables or masking, or
the compiler is permitted to convert the code into such a form.

Data-handling Operations

The characteristics of these algorithms include sequential
access to data, which permit the use of the normal load and
store operations to reference the data. Octlet and hexlet loads
and stores reference several sequential items of data, the
number depending on the operand precision.

The discussion of these operations is independent of byte
ordering, though the ordering of bit fields within octlets and
hexlets must be consistent with the ordering used for bytes.
Specifically, if big-endian byte ordering is used for the loads

US 9,229,713 B2

31

and stores, the figures below should assume that index values
increase from left to right, and for little-endian byte ordering,
the index values increase from right to left. For this reason, the
figures indicate different index values with different shades,
rather than numbering.

When an index of the nx+k form is used in array operands,
where n is a power of 2, data memory sequentially loaded
contains elements useful for separate operands. The “shuffle”
instruction divides a triclet of data up into two hexlets, with
alternate bit fields of the source triclet grouped together into
the two results. An immediate field, h, in the instruction
specifies which of the two regrouped hexlets to select for the
result. For example, two X.SHUFFLE.PAIR rd=rc.rb,32,
128,h operations rearrange the source triclet (c,b) into two
hexlets as in FIG. 39B.

In the shuffle operation, two hexlet general registers
specify the source triclet, and one of the two result hexlets are
specified as hexlet general register.

The example above directly applies to the case where nis 2.
When n is larger, shuffle operations can be used to further
subdivide the sequential stream. For example, whenn is 4, we
need to deal out 4 sets of doublet operands, as shown in FIG.
39C. (An example of the use of a four-way deal is a digital
signal processing application such as conversion of color to
monochrome.)

When an array result of computation is accessed with an
index of the form nx+k, for n a power of 2, the reverse of the
“deal” operation needs to be performed on vectors of results
to interleave them for storage in sequential order. The
“shuffle” operation interleaves the bit fields of two octlets of
results into a single hexlet. For example a X.SHUFFLE.16
operation combines two octlets of doublet fields into a hexlet
as in FIG. 39D.

For larger values of n, a series of shuffle operations can be
used to combine additional sets of fields, similarly to the
mechanism used for the deal operations. For example, when
n is 4, we need to shuftle up 4 sets of doublet operands, as
shown in FIG. 39E. (An example of a four-way shuffle is a
digital signal processing application such as conversion of
monochrome to color.)

When the index of a source array operand or a destination
array result is negated, or in other words, if of the form nx+k
where n is negative, the elements of the array must be
arranged in reverse order. The “swizzle” operation can
reverse the order of the bit fields in a hexlet. For example, a
X.SWIZZLE rd=rc,127, 112 operation reverses the doublets
within a hexlet as shown in FIG. 39F.

In some cases, it is desirable to use a group instruction in
which one or more operands is a single value, not an array.
The “swizzle” operation can also copy operands to multiple
locations within a hexlet. For example, a X.SWIZZLE 15,0
operation copies the low-order 16 bits to each double within
a hexlet.

Variations of the deal and shuffle operations are also useful
for converting from one precision to another. This may be
required if one operand is represented in a different precision
than another operand or the result, or if computation must be
performed with intermediate precision greater than that of the
operands, such as when using an integer multiply.

When converting from a higher precision to a lower preci-
sion, specifically when halving the precision of a hexlet of bit
fields half of the data must be discarded, and the bit fields
packed together. The “compress” operation is a variant of the
“deal” operation, in which the operand is a hexlet, and the
result is an octlet. An arbitrary half-sized sub-field of each bit
field can be selected to appear in the result. For example, a

20

30

35

40

45

55

60

32
selection of bits 19 . . . 4 of each quadlet in a hexlet is
performed by the X.COMPRESS rd+rc,16, 4 operation as
shown in FIG. 39G.

When converting from lower-precision to higher-preci-
sion, specifically when doubling the precision of an octlet of
bit fields, one of several techniques can be used, either mul-
tiply, expand, or shuftle. Each has certain useful properties. In
the discussion below, m is the precision of the source operand.

The multiply operation, described in detail below, auto-
matically doubles the precision of the result, so multiplication
by a constant vector will simultaneously double the precision
of the operand and multiply by a constant that can be repre-
sented in m bits.

An operand can be doubled in precision and shifted left
with the “expand” operation, which is essentially the reverse
of the “compress” operation. For example the X.EXPAND
rd=rc,16,4 expands from 16 bits to 32, and shifts 4 bits left as
shown in FIG. 39H.

The “shuffle” operation can double the precision of an
operand and multiply it by 1 (unsigned only), 2 or 2"+1, by
specifying the sources of the shuffle operation to be a zeroed
general register and the source operand, the source operand
and zero, or both to be the source operand. When multiplying
by 2m, a constant can be freely added to the source operand by
specifying the constant as the right operand to the shuffle.

Arithmetic Operations

The characteristics of the algorithms that affect the arith-
metic operations most directly are low-precision arithmetic,
and vectorizable operations. The fixed-point arithmetic
operations provided are most of the functions provided in the
standard integer unit, except for those that check conditions.
These functions include add, subtract, bitwise Boolean opera-
tions, shift, set on condition, and multiply, in forms that take
packed sets of bit fields of a specified size as operands. The
floating-point arithmetic operations provided are as complete
as the scalar floating-point arithmetic set. The result is gen-
erally a packed set of bit fields of the same size as the oper-
ands, except that the fixed-point multiply function intrinsi-
cally doubles the precision of the bit field.

Conditional operations are provided only in the sense that
the set on condition operations can be used to construct bit
masks that can select between alternate vector expressions,
using the bitwise Boolean operations. All instructions operate
over the entire octlet or hexlet operands, and produce a hexlet
result. The sizes of the bit fields supported are always powers
of two.

Galois Field Operations

Zeus provides a general software solution to the most com-
mon operations required for Galois Field arithmetic. The
instructions provided include a polynomial multiply, with the
polynomial specified as one general register operand. This
instruction can be used to perform CRC generation and
checking Reed-Solomon code generation and checking, and
spread-spectrum encoding and decoding.

Software Conventions

The following section describes software conventions that
are to be employed at software module boundaries, in order to
permit the combination of separately compiled code and to
provide standard interfaces between application, library and
system software. General register usage and procedure call
conventions may be modified, simplified or optimized when a
single compilation encloses procedures within a compilation
unit so that the procedures have no external interfaces. For
example, internal procedures may permit a greater number of
general register-passed parameters, or have general registers
allocated to avoid the need to save general registers at proce-

US 9,229,713 B2

33

dure boundaries, or may use a single stack or data pointer
allocation to suffice for more than one level of procedure call.

General Register Usage

All Zeus general registers are identical and general-pur-
pose; there is no dedicated zero-valued general register, and
there are no dedicated floating-point general registers. How-
ever, some procedure-call-oriented instructions imply usage
of'general registers zero (0) and one (1) in a manner consistent
with the conventions described below. By software conven-
tion, the non-specific general registers are used in more spe-
cific ways.

general register number assembler names usage how saved

0 Ip, 10 link pointer caller

1 dp, 1l data pointer caller

2-9 12-19 parameters caller

10-31 r10-r31 temporary caller

32-61 132-161 saved callee

62 p, 162 frame pointer callee

63 sp, 163 stack pointer callee

At a procedure call boundary, general registers are saved
either by the caller or callee procedure, which provides a
mechanism for leaf procedures to avoid needing to save gen-
eral registers. Compilers may choose to allocate variables
into caller or callee saved general registers depending on how
their lifetimes overlap with procedure calls.

Procedure Calling Conventions

Procedure parameters are normally allocated in general
registers, starting from general register 2 up to general regis-
ter 9. These general registers hold up to 8 parameters, which
may each be of any size from one byte to sixteen bytes
(hexlet), including floating-point and small structure param-
eters. Additional parameters are passed in memory, allocated
on the stack. For C procedures which use varargs.h or stdarg.h
and pass parameters to further procedures, the compilers must
leave room in the stack memory allocation to save general
registers 2 through 9 into memory contiguously with the
additional stack memory parameters, so that procedures such
as _doprnt can refer to the parameters as an array.

Procedure return values are also allocated in general reg-
isters, starting from general register 2 up to general register 9.
Larger values are passed in memory, allocated on the stack.

There are several pointers maintained in general registers
for the procedure calling conventions: Ip, sp, dp, fp.

The 1p general register contains the address to which the
callee should return to at the conclusion of the procedure. If
the procedure is also a caller, the lp general register will need
to be saved on the stack, once, before any procedure call, and
restored, once, after all procedure calls. The procedure
returns with a branch instruction, specifying the lp general
register.

The sp general register is used to form addresses to save
parameter and other general registers, maintain local vari-
ables, i.e., data that is allocated as a LIFO stack. For proce-
dures that require a stack, normally a single allocation is
performed, which allocates space for input parameters, local
variables, saved general registers, and output parameters all at
once. The sp general register is always hexlet aligned.

The dp general register is used to address pointers, literals
and static variables for the procedure. The dp general register
points to small (approximately 4096-entry) array of pointers,
literals and statically-allocated variables, which is used
locally to the procedure. The uses of the dp general register
are similar to the use of the gp general register on a Mips
R-series processor, except that each procedure may have a

15

20

25

40

45

60

34

different value, which expands the space addressable by small
offsets from this pointer. This is an important distinction, as
the offset field of Zeus load and store instructions are only 12
bits. The compiler may use additional general registers and/or
indirect pointers to address larger regions for a single proce-
dure. The compiler may also share a single dp general register
value between procedures which are compiled as a single unit
(including procedures which are externally callable), elimi-
nating the need to save, modify and restore the dp general
register for calls between procedures which share the same dp
general register value.

Load-and store-immediate-aligned instructions, specify-
ing the dp general register as the base general register, are
generally used to obtain values from the dp region. These
instructions shift the immediate value by the logarithm of the
size of the operand, so loads and stores of large operands may
reach farther from the dp general register than of small oper-
ands. Referring to FIG. 391, the size of the addressable region
is maximized if the elements to be placed in the dp region are
sorted according to size, with the smallest elements placed
closest to the dp base. At points where the size changes,
appropriate padding is added to keep elements aligned to
memory boundaries matching the size of the elements. Using
this technique, the maximum size of'the dp region is always at
least 4096 items, and may be larger when the dp area is
composed of a mixture of data sizes.

The dp general register mechanism also permits code to be
shared, with each static instance of the dp region assigned to
a different address in memory. In conjunction with position-
independent or pc-relative branches, this allows library code
to be dynamically relocated and shared between processes.

To implement an inter-module (separately compiled) pro-
cedure call, the 1p general register is loaded with the entry
point of the procedure, and the dp general register is loaded
with the value of the dp general register required for the
procedure. These two values are located adjacent to each
other as a pair of octlet quantities in the dp region for the
calling procedure. For a statically-linked inter-module proce-
dure call, the linker fills in the values at link time. However
this mechanism also provides for dynamic linking, by ini-
tially filling in the lp and dp fields in the data structure to
invoke the dynamic linker. The dynamic linker can use the
contents of the Ip and/or dp general registers to determine the
identity of the caller and callee, to find the location to fill in the
pointers and resume execution. Specifically, the lp value is
initially set to point to an entry point in the dynamic linker,
and the dp value is set to point to itself: the location of the Ip
and dp values in the dp region of the calling procedure. The
identity of the procedure can be discovered from a string
following the dp pointer, or a separate table, indexed by the dp
pointer.

The fp general register is used to address the stack frame
when the stack size varies during execution of a procedure,
such as when using the GNU C alloca function. When the
stack size can be determined at compile time, the sp general
register is used to address the stack frame and the fp general
register may be used for any other general purpose as a
callee-saved general register.

Typical static-linked, intra-module calling sequence:

caller (non-leaf):

caller: A.ADDI sp@-size // allocate caller stack frame
S.1.64.A lIp,sp,off // save original lp general register
... (callee using same dp as caller)
B.LINK.I callee

US 9,229,713 B2

35

-continued

Typical static-linked, intra-module calling sequence:

... (callee using same dp as caller)

B.LINK.I callee
LI164.A lp=sp,off // restore original lp general register
AADDI sp@size // deallocate caller stack frame
B Ip // return
callee (leaf):
callee: ... (code using dp)
B Ip // return

Procedures that are compiled together may share a com-
mon data region, in which case there is no need to save, load,
and restore the dp region in the callee, assuming that the callee
does not modify the dp general register. The pc-relative
addressing of the B.LINK.I instruction permits the code
region to be position-independent.

Minimum static-linked, intra-module calling sequence:

caller (non-leaf):

caller: A.COPY 131=lp // save original lp general register
... (callee using same dp as caller)
B.LINK.1 callee
... (callee using same dp as caller)
B.LINK.1 callee
B 131 // return
callee (leaf):
callee: ... (code using dp, 31 unused)

B Ip // return

When all the callee procedures are intra-module, the stack
frame may also be eliminated from the caller procedure by
using “temporary” caller save general registers not utilized by
the callee leaf procedures. In addition to the Ip value indicated
above, this usage may include other values and variables that
live in the caller procedure across callee procedure calls.

Typical dynamic-linked, inter-module calling sequence:

caller (non-leaf):

caller: A.ADDI sp@-size // allocate caller stack frame
S.1.64.A Ip,sp,off //save original Ip general register
S.1.64.A dp,sp,off //save original dp general register
... (code using dp)
L.1.64.A lp=dp,off //loadlp
L.1.64.A dp=dp,off //loaddp
B.LINK Ip=lp // invoke callee procedure
L.1.64.A dp=sp,off //restore dp general register from stack
... (code using dp)
L.1.64.A lp=sp,off //restore original lp general register
A.ADDI sp=size // deallocate caller stack frame
B Ip // return

callee (leaf):

callee: ... (code using dp)
B Ip // return

The load instruction is required in the caller following the
procedure call to restore the dp general register. A second load
instruction also restores the lp general register, which may be
located at any point between the last procedure call and the
branch instruction which returns from the procedure.

System and Privileged Library Calls

It is an objective to make calls to system facilities and
privileged libraries as similar as possible to normal procedure
calls as described above. Rather than invoke system calls as
an exception, which involves significant latency and compli-

10

15

20

25

30

40

45

50

55

60

65

36

cation, we prefer to use amodified procedure call in which the
process privilege level is quietly raised to the required level.
To provide this mechanism safely, interaction with the virtual
memory system is required.

Such a procedure must not be entered from anywhere other
than its legitimate entry point, to prohibit entering a proce-
dure after the point at which security checks are performed or
with invalid general register contents, otherwise the access to
a higher privilege level can lead to a security violation. In
addition, the procedure generally must have access to
memory data, for which addresses must be produced by the
privileged code. To facilitate generating these addresses, the
branch-gateway instruction allows the privileged code proce-
dure to rely the fact that a single general register has been
verified to contain a pointer to a valid memory region.

The branch-gateway instruction ensures both that the pro-
cedure is invoked at a proper entry point, and that other
general registers such as the data pointer and stack pointer can
be properly set. To ensure this, the branch-gateway instruc-
tion retrieves a “gateway” directly from the protected virtual
memory space. The gateway contains the virtual address of
the entry point of the procedure and the target privilege level.
A gateway can only exist in regions of the virtual address
space designated to contain them, and can only be used to
access privilege levels at or below the privilege level at which
the memory region can be written to ensure that a gateway
cannot be forged.

The branch-gateway instruction ensures that general reg-
ister 1 (dp) contains a valid pointer to the gateway for this
target code address by comparing the contents of general
register O (Ip) against the gateway retrieved from memory and
causing an exception trap if they do not match. By ensuring
that general register 1 points to the gateway, auxiliary infor-
mation, such as the data pointer and stack pointer can be set by
loading values located by the contents of general register 1.
For example, the eight following the gateway may be used as
a pointer to a data region for the procedure.

Referring to FI1G. 39J before executing the branch-gateway
instruction general register 1 must be set to point at the gate-
way, and general register O must be set to the address of the
target code address plus the desired privilege level. A
“L.1.64.L.A r0=r1,0” instruction is one way to set general
register 0, if general register 1 has already been set, but any
means of getting the correct value into general register O is
permissible.

Similarly, a return from a system or privileged routine
involves a reduction of privilege. This need not be carefully
controlled by architectural facilities, so a procedure may
freely branch to a less-privileged code address. Normally,
such a procedure restores the stack frame, then uses the
branch-down instruction to return.

Typical dynamic-linked, inter-gateway calling sequence:

caller:
caller: A.ADDI sp@-size // allocate caller stack frame
S.I1.64.A Ip,sp,off
S.I1.64.A dp,sp,off
L.I64.A lp=dp,off //load lp
L.I64.A dp=dp,off //load dp
B.GATE
L.I64.A dp,sp,off
... (code using dp)
L.I64.A Ip=sp,off // restore original lp general register
A.ADDI sp=size // deallocate caller stack frame
B Ip // return

US 9,229,713 B2

37

-continued

Typical dynamic-linked, inter-gateway calling sequence:

callee (non-leat):

calee: L.I64.A dp=dp,off //load dp with data pointer
S.I.64.A sp,dp,off
LI164.A sp=dp,off // new stack pointer
S.I.64.A Ip,sp,off
S.I.64.A dp,sp,off
... (using dp)
LI164.A dp,sp,off
... (code using dp)
LI164.A Ip=sp,off // restore original lp general register
LI164.A sp=sp,off // restore original sp general register
B.DOWN Ip
callee (leaf, no stack):
callee: ... (using dp)
B.DOWN Ip

It can be observed that the calling sequence is identical to
that of the inter-module calling sequence shown above,
except for the use of the B.GATE instruction instead of a
B.LINK instruction. Indeed, if a B.GATE instruction is used
when the privilege level in the 1p general register is not higher
than the current privilege level, the B.GATE instruction per-
forms an identical function to a B.LINK.

The callee, if it uses a stack for local variable allocation,
cannot necessarily trust the value of the sp passed to it, as it
can be forged. Similarly, any pointers which the callee pro-
vides should not be used directly unless it they are verified to
point to regions which the callee should be permitted to
address. This can be avoided by defining application pro-
gramming interfaces (APIs) in which all values are passed
and returned in general registers, or by using a trusted, inter-
mediate privilege wrapper routine to pass and return param-
eters. The method described below can also be used.

It can be useful to have highly privileged code call less-
privileged routines. For example, a user may request that
errors in a privileged routine be reported by invoking a user-
supplied error-logging routine. To invoke the procedure, the
privilege can be reduced via the branch-down instruction. The
return from the procedure actually requires an increase in
privilege, which must be carefully controlled. This is dealt
with by placing the procedure call within a lower-privilege
procedure wrapper, which uses the branch-gateway instruc-
tion to return to the higher privilege region after the call
through a secure re-entry point. Special care must be taken to
ensure that the less-privileged routine is not permitted to gain
unauthorized access by corruption of the stack or saved gen-
eral registers, such as by saving all general registers and
setting up a new stack frame (or restoring the original lower-
privilege stack) that may be manipulated by the less-privi-
leged routine. Finally, such a technique is vulnerable to an
unprivileged routine attempting to use the re-entry point
directly, so it may be appropriate to keep a privileged state
variable which controls permission to enter at the re-entry
point.

Processor Layout

Referring first to FIG. 1, a general purpose processor is
illustrated therein in block diagram form. In FIG. 1, four
copies of an access unit are shown, each with an access
instruction fetch queue A-Queue 101-104. Each access
instruction fetch queue A-Queue 101-104 is coupled to an
access register file AR 105-108, which are each coupled to
two access functional units A 109-116, In a typical embodi-
ment each thread of the processor may have on the order of
sixty-four general purpose registers (e.g., the AR’s 105-108
and ER’s 125-128). The access units function independently

10

15

20

25

30

35

40

45

50

55

60

38

for four simultaneous threads of execution, and each compute
program control flow by performing arithmetic and branch
instructions and access memory by performing load and store
instructions. These access units also provide wide operand
specifiers for wide operand instructions. These eight access
functional units A 109-116 produce results for access register
files AR 105-108 and memory addresses to a shared memory
system 117-120.

In one embodiment, the memory hierarchy includes on-
chip instruction and data memories, instruction and data
caches, a virtual memory facility, and interfaces to external
devices. In FIG. 1, the memory system is comprised of a
combined cache and niche memory 117, an external bus
interface 118, and, externally to the device, a secondary cache
119 and main memory system with [/O devices 120. The
memory contents fetched from memory system 117-120 are
combined with execute instructions not performed by the
access unit, and entered into the four execute instruction
queues E-Queue 121-124. For wide instructions, memory
contents fetched from memory system 117-120 are also pro-
vided to wide operand microcaches 132-136 by bus 137.
Instructions and memory data from E-queue 121-124 are
presented to execution register files 125-128, which fetch
execution register file source operands. The instructions are
coupled to the execution unit arbitration unit Arbitration 131,
that selects which instructions from the four threads are to be
routed to the available execution functional units E 141 and
149, X 142 and 148, G 143-144 and 146-147, and T 145. The
execution functional units E 141 and 149, the execution func-
tional units X 142 and 148, and the execution functional unit
T 145 each contain a wide operand microcache 132-136,
which are each coupled to the memory system 117 by bus
137.

The execution functional units G 143-144 and 146-147 are
group arithmetic and logical units that perform simple arith-
metic and logical instructions, including group operations
wherein the source and result operands represent a group of
values of a specified symbol size, which are partitioned and
operated on separately, with results catenated together. In a
presently preferred embodiment the data path is 128 bits
wide, although the present invention is not intended to be
limited to any specific size of data path.

The execution functional units X 142 and 148 are crossbar
switch units that perform crossbar switch instructions. The
crossbar switch units 142 and 148 perform data handling
operations on the data stream provided over the data path
source operand buses 151-158, including deals, shuffles,
shifts, expands, compresses, swizzles, permutes and reverses,
plus the wide operations discussed hereinafter. In a key ele-
ment of a first aspect of the invention, at least one such
operation will be expanded to a width greater than the general
register and data path width.

The execution functional units E 141 and 149 are ensemble
units that perform ensemble instructions using a large array
multiplier, including group or vector multiply and matrix
multiply of operands partitioned from data path source oper-
and buses 151-158 and treated as integer, floating point, poly-
nomial or Galois field values. Matrix multiply instructions
and other operations utilize a wide operand loaded into the
wide operand microcache 132 and 136.

The execution functional unit T 145 is a translate unit that
performs table-look-up operations on a group of operands
partitioned from a register operand, and catenates the result.
The Wide Translate instruction utilizes a wide operand loaded
into the wide operand microcache 134.

The execution functional units E 141, 149, execution func-
tional units X-142, 148, and execution functional unit T each

US 9,229,713 B2

39

contain dedicated storage to permit storage of source oper-
ands including wide operands as discussed hereinafter. The
dedicated storage 132-136, which may be thought of as a
wide microcache, typically has a width which is a multiple of
the width of the data path operands related to the data path
source operand buses 151-158. Thus, if the width of the data
path 151-158 is 128 bits, the dedicated storage 132-136 may
have a width of 256, 512, 1024 or 2048 bits. Operands which
utilize the full width of the dedicated storage are referred to
herein as wide operands, although it is not necessary in all
instances that a wide operand use the entirety of the width of
the dedicated storage; it is sufficient that the wide operand use
aportion greater than the width of the memory data path of the
output of the memory system 117-120 and the functional unit
data path of the input of the execution functional units 141-
149, though not necessarily greater than the width of the two
combined. Because the width of the dedicated storage 132-
136 is greater than the width of the memory operand bus 137,
portions of wide operands are loaded sequentially into the
dedicated storage 132-136. However, once loaded, the wide
operands may then be used at substantially the same time. It
can be seen that functional units 141-149 and associated
execution registers 125-128 form a data functional unit, the
exact elements of which may vary with implementation.

The execution register file ER 125-128 source operands are
coupled to the execution units 141-145 using source operand
buses 151-154 and to the execution units 145-149 using
source operand buses 155-158. The function unit result oper-
ands from execution units 141-145 are coupled to the execu-
tion register file ER 125-128 using result bus 161 and the
function units result operands from execution units 145-149
are coupled to the execution register file using result bus 162.

Wide Multiply Matrix

The wide operands of the present invention provide the
ability to execute complex instructions such as the wide mul-
tiply matrix instruction shown in FIG. 2, which can be appre-
ciated in an alternative form, as well, from FIG. 3. As can be
appreciated from FIGS. 2 and 3, a wide operand permits, for
example, the matrix multiplication of various sizes and
shapes which exceed the data path width. The example of
FIG. 2 involves a matrix specified by register rc having
128*64/size bits (512 bits for this example) multiplied by
vector contained in register rb having 128 bits, to yield a
result, placed in register rd, of 128 bits.

The notation used in FIG. 2 and following similar figures
illustrates a multiplication as a shaded area at the intersection
of two operands projected in the horizontal and vertical
dimensions. A summing node is illustrated as a line segment
connecting a darkened dots at the location of multiplier prod-
ucts that are summed. Products that are subtracted at the
summing node are indicated with a minus symbol within the
shaded area.

When the instruction operates on floating-point values, the
multiplications and summations illustrated are floating point
multiplications and summations. An exemplary embodiment
may perform these operations without rounding the interme-
diate results, thus computing the final result as if computed to
infinite precision and then rounded only once.

It can be appreciated that an exemplary embodiment of the
multipliers may compute the product in carry-save form and
may encode the multiplier rb using Booth encoding to mini-
mize circuit area and delay. It can be appreciated that an
exemplary embodiment of such summing nodes may perform
the summation of the products in any order, with particular
attention to minimizing computation delay, such as by per-
forming the additions in a binary or higher-radix tree, and
may use carry-save adders to perform the addition to mini-

5

10

15

20

25

30

35

40

45

50

55

60

65

40

mize the summation delay. It can also be appreciated that an
exemplary embodiment may perform the summation using
sufficient intermediate precision that no fixed-point or float-
ing-point overflows occur on intermediate results.

A comparison of FIGS. 2 and 3 can be used to clarify the
relation between the notation used in FIG. 2 and the more
conventional schematic notation in FIG. 3, as the same opera-
tion is illustrated in these two figures.

Wide Operand

The operands that are substantially larger than the data path
width of the processor are provided by using a general-pur-
pose register to specify a memory specifier from which more
than one but in some embodiments several data path widths of
data can be read into the dedicated storage. The memory
specifier typically includes the memory address together with
the size and shape of the matrix of data being operated on. The
memory specifier or wide operand specifier can be better
appreciated from FIG. 5, in which a specifier 500 is seen to be
an address, plus a field representative of the size/2 and a
further field representative of width/2, where size is the prod-
uct of the depth and width of the data. The address is aligned
to a specified size, for example sixty four bytes, so that a
plurality of low order bits (for example, six bits) are zero. The
specifier 500 can thus be seen to comprise a first field 505 for
the address, plus two field indicia 510 within the low order six
bits to indicate size and width.

Specifier Decoding

The decoding of the specifier 500 may be further appreci-
ated from FIG. 6 where, for a given specifier 600 made up of
an address field 605 together with a field 610 comprising
plurality of low order bits. By a series of arithmetic operations
shown at steps 615 and 620, the portion of the field 610
representative of width/2 is developed. In a similar series of
steps shown at 625 and 630, the value of t is decoded, which
can then be used to decode both size and address. The portion
of'the field 610 representative of size/2 is decoded as shown at
steps 635 and 640, while the address is decoded in a similar
way at steps 645 and 650.

Wide Function Unit

The wide function unit may be better appreciated from
FIG. 7 in which a register number 700 is provided to an
operand checker 705. Wide operand specifier 710 communi-
cates with the operand checker 705 and also addresses
memory 715 having a defined memory width. The memory
address includes a plurality of register operands 720A n,
which are accumulated in a dedicated storage portion 714 of
a data functional unit 725. In the exemplary embodiment
shown in FIG. 7, the dedicated storage 71.4 can be seen to
have a width equal to eight data path widths, such that eight
wide operand portions 730A-H are sequentially loaded into
the dedicated storage to form the wide operand. Although
eight portions are shown in FIG. 7, the present invention is not
limited to eight or any other specific multiple of data path
widths. Once the wide operand portions 730A-H are sequen-
tially loaded, they maybe used as a single wide operand 735
by the functional element 740, which may be any element(s)
from FIG. 1 connected thereto. The result of the wide operand
is then provided to a result register 745 which in a presently
preferred embodiment is of the same width as the memory
width.

Once the wide operand is successfully loaded into the
dedicated storage 714, a second aspect of the present inven-
tion may be appreciated. Further execution of this instruction
or other similar instructions that specify the same memory
address can read the dedicated storage to obtain the operand
value under specific conditions that determine whether the
memory operand has been altered by intervening instructions.

US 9,229,713 B2

41

Assuming that these conditions are met, the memory operand
fetch from the dedicated storage is combined with one or
more register operands in the functional unit, producing a
result. In some embodiments, the size of the result is limited
to that of a general register, so that no similar dedicated
storage is required for the result. However, in some different
embodiments, the result may be a wide operand, to further
enhance performance.

To permit the wide operand value to be addressed by sub-
sequent instructions specifying the same memory address,
various conditions must be checked and confirmed:

Those conditions include:

Each memory store instruction checks the memory address
against the memory addresses recorded for the dedicated
storage. Any match causes the storage to be marked invalid,
since a memory store instruction directed to any of the
memory addresses stored in dedicated storage 714 means that
data has been overwritten.

The register number used to address the storage is
recorded. If no intervening instructions have written to the
register, and the same register is used on the subsequent
instruction, the storage is valid (unless marked invalid by rule
#1).

If the register has been modified or a different register
number is used, the value of the register is read and compared
against the address recorded for the dedicated storage. This
uses more resources than #1 because of the need to fetch the
register contents and because the width of the register is
greater than that of the register number itself. If the address
matches, the storage is valid. The new register number is
recorded for the dedicated storage.

If conditions #2 or #3 are not met, the register contents are
used to address the general-purpose processor’s memory and
load the dedicated storage. If dedicated storage is already
fully loaded, a portion of the dedicated storage must be dis-
carded (victimized) to make room for the new value. The
instruction is then performed using the newly updated dedi-
cated storage. The address and register number is recorded for
the dedicated storage.

By checking the above conditions, the need for saving and
restoring the dedicated storage is eliminated. In addition, if
the context of the processor is changed and the new context
does not employ Wide instructions that reference the same
dedicated storage, when the original context is restored, the
contents of the dedicated storage are allowed to be used
without refreshing the value from memory, using checking
rule #3. Because the values in the dedicated storage are read
from memory and not modified directly by performing wide
operations, the values can be discarded at any time without
saving the results into general memory. This property simpli-
fies the implementation of rule #4 above.

An alternate embodiment of the present invention can
replace rule #1 above with the following rule:

la. Each memory store instruction cheeks the memory
address against the memory addresses recorded for the dedi-
cated storage. Any match causes the dedicated storage to be
updated, as well as the general memory.

By use of the above rule 1.a, memory store instructions can
modify the dedicated storage, updating just the piece of the
dedicated storage that has been changed, leaving the remain-
der intact. By continuing to update the general memory, it is
still true that the contents of the dedicated memory can be
discarded at any time without saving the results into general
memory. Thus rule #4 is not made more complicated by this
choice. The advantage of this alternate embodiment is that the
dedicated storage need not be discarded (invalidated) by
memory store operations.

10

15

20

25

30

35

40

45

50

55

60

65

42

Wide Microcache Data Structures

Referring next to FIG. 9, an exemplary arrangement of the
data structures of the wide microcache or dedicated storage
114 may be better appreciated. The wide microcache con-
tents, wme.c, can be seen to form a plurality of data path
widths 900 A-n, although in the example shown the number is
eight. The physical address, wmc.pa, is shown as 64 bits in the
example shown, although the invention is not limited to a
specific width. The size of the contents, wmec.size, is also
provided in a field which is shown as 10 bits in an exemplary
embodiment. A “contents valid” flag, wmc.cv, of one bit is
also included in the data structure, together with a two bit field
for thread last used, or wmc.th. In addition, a six bit field for
register last used, wmec.reg, is provided in an exemplary
embodiment. Further, a one bit flag for register and thread
valid, or wme.rtv, may be provided.

Wide Microcache Control—Software

The process by which the microcache is initially written
with a wide operand, and thereafter verified as valid for fast
subsequent operations, may be better appreciated from FIG 8.
The process begins at 800, and progresses to step 805 where
a check of the register contents is made against the stored
value wme.rc. Iftrue, a check is made at step 810 to verify the
thread. Iftrue, the process then advances to step 815 to verify
whether the register and thread are valid. If step 815 reports as
true, a check is made at step 820 to verify whether the contents
are valid. If all of steps 805 through 820 return as true, the
subsequent instruction is able to utilize the existing wide
operand as shown at step 825, after which the process ends.
However, if any of steps 805 through 820 return as false, the
process branches to step 830, where content, physical address
and size are set. Because steps 805 through 820 all lead to
either step 825 or 830, steps 805 through 820 maybe per-
formed in any order or simultaneously without altering the
process. The process then advances to step 835 where size is
checked. This check basically ensures that the size of the
translation unit is greater than or equal to the size of the wide
operand, so that a physical address can directly replace the
use of a virtual address. The concern is that, in some embodi-
ments, the wide operands may be larger than the minimum
region that the virtual memory system is capable of mapping.
As aresult, it would be possible for a single contiguous virtual
address range to be mapped into multiple, disjoint physical
address ranges, complicating the task of comparing physical
addresses. By determining the size of the wide operand and
comparing that size against the size of the virtual address
mapping region which is referenced, the instruction is aborted
with an exception trap if the wide operand is larger than the
mapping region. This ensures secure operation of the proces-
sor. Software can then re-map the region using a larger size
map to continue execution if desired. Thus, if size is reported
as unacceptable at step 835, an exception is generated at step
840. If size is acceptable, the process advances to step 845
where physical address is checked, If the check reports as
met, the process advances to step 850, where a check of the
contents valid flag is made. If either check at step 845 or 850
reports as false, the process branches and new content is
written into the dedicated storage 114, with the fields thereof
being set accordingly. Whether the check at step 850 reported
true, or whether new content was written at, step 855, the
process advances to step 860 where appropriate fields are set
to indicate the validity of the data after which the requested
function can, be performed at step 825, The process then ends.

Wide Microcache Control—Hardware

Referring nextto FIGS. 10 and 11, which together show the
operation of the microcache controller from a hardware
standpoint, the operation of the microcache controller may be

US 9,229,713 B2

43

better understood. In the hardware implementation, it is clear
that conditions which are indicated as sequential steps in F1G.
8 and 9 above can be performed in parallel, reducing the delay
for such wide operand checking. Further, a copy of the indi-
cated hardware may be included for each wide microcache,
and thereby all such microcaches as may be alternatively
referenced by an instruction can be tested in parallel. It is
believed that no further discussion of FIGS. 10 and 11 is
required in view of the extensive discussion of FIGS. 8 and 9,
above.

Various alternatives to the foregoing approach do exist for
the use of wide operands, including an implementation in
which a single instruction can accept two wide operands,
partition the operands into symbols, multiply corresponding
symbols together, and add the products to produce a single
scalar value or a vector of partitioned values of width of the
register file, possibly after extraction of a portion of the sums.
Such an instruction can be valuable for detection of motion or
estimation of motion in video compression, A further
enhancement of such an instruction can incrementally update
the dedicated storage if the address of one wide operand is
within the range of previously specified wide operands in the
dedicated storage, by loading only the portion not already
within the range and shifting the in-range portion as required.
Such an enhancement allows the operation to be performed
over a “sliding window” of possible values. In such an
instruction, one wide operand is aligned and supplies the size
and shape information, while the second wide operand,
updated incrementally, is not aligned.

The Wide Convolve Extract instruction and Wide Con-
volve Floating-point instruction described below is one alter-
native embodiment of an instruction that accepts two wide
operands.

Another alternative embodiment of the present invention
can define additional instructions where the result operand is
a wide operand. Such an enhancement removes the limit that
a result can be no larger than the size of a general register,
further enhancing performance. These wide results can be
cached locally to the functional unit that created them, but
must be copied to the general memory system before the
storage can be reused and before the virtual memory system
alters the mapping of the address of the wide result. Data
paths must be added so that load operations and other wide
operations can read these wide results—forwarding of a wide
result from the output of a functional unit back to its input is
relatively easy, but additional data paths may have to be
introduced ifit is desired to forward wide results back to other
functional units as wide operands.

As previously discussed, a specification of the size and
shape of the memory operand is included with the low-order
bits of the address. In a presently preferred implementation,
such memory operands are typically a power of two in size
and aligned to that size. Generally one half the total size is
added (or inclusively or’ed, or exclusively or’ed) to the
memory address, and one half of the data width is added (or
inclusively or’ed, or exclusively or’ed) to the memory
address. These bits can be decoded and stripped from the
memory address, so that the controller is made to step through
all the required addresses. The number of distinct operands
required for these instructions is hereby decreased, as the
size, shape and address of the memory operand are combined
into a single register operand value.

In an alternative exemplary embodiment described below
in the Wide Switch instruction and others below, the wide
operand specifier is described as containing optional size and

10

15

20

25

30

35

40

45

50

55

60

65

44

shape specifiers. As such, the omission of the specifier value
obtains a default size or shape defined from attributes of the
specified instruction.

In an alternative exemplary embodiment described below
in the Wide Convolve Extract instruction below, the wide
operand specifier contains mandatory size and shape speci-
fier. The omission of the specifier value obtains an exception
which aborts the operation. Notably, the specification of a
larger size or shape than an implementation may permit due to
limited resources, such as the limited size of a wide operand
memory, may result in a similar exception when the size or
shape descriptor is searched for only in the limited bit range in
which a valid specifier value may be located. This can be
utilized to ensure that software that requires a larger specifier
value than the implementation can provide results in a
detected exception condition, when for example, a plurality
of implementations of the same instruction set of a processor
differ in capabilities. This also allows for an upward-compat-
ible extension of wide operand sizes and shapes to larger
values in extended implementations of the same instruction
set.

In an alternative exemplary embodiment, the wide operand
specifier contains size and shape specifiers in an alternative
representation other than linearly related to the value of the
size and shape parameters. For example, low-order bits of the
specifier may contain a fixed-size binary value which is loga-
rithmically related to the value, such as a two-bit field where
00 conveys a value 0f 128,01 a value 0f 256, 10 avalue of 512,
and 11 a value of 1024. The use of a fixed-size field limits the
maximum value which can be specified in, for example, a
later upward-compatible implementation of a processor.

INSTRUCTION SET

This section describes the instruction set in complete archi-
tectural detail. Operation codes are numerically defined by
their position in the following operation code tables, and are
referred to symbolically in the detailed instruction defini-
tions. Entries that span more than one location in the table
define the operation code identifier as the smallest value of all
the locations spanned. The value of the symbol can be calcu-
lated from the sum of the legend values to the left and above
the identifier.

Instructions that have great similarity and identical formats
are grouped together. Starting on a new page, each category of
instructions is named and introduced.

The Operation codes section lists each instruction by mne-
monic that is defined on that page. A textual interpretation of
each instruction is shown beside each mnemonic.

The Equivalences section lists additional instructions
known to assemblers that are equivalent or special cases of
base instructions, again with a textual interpretation of each
instruction beside each mnemonic. Below the list, each
equivalent instruction is defined, either in terms of a base
instruction or another equivalent instruction. The symbol
between the instruction and the definition has a particular
meaning. If it is an arrow (<—or —), it connects two math-
ematicaly equivalent operations, and the arrow direction indi-
cates which form is preferred and produced in a reverse
assembly. If the symbol is a (<=) the form on the left is
assembled into the form on the right solely for encoding
purposes, and the form on the right is otherwise illegal in the
assembler. The parameters in these definitions are formal; the
names are solely for pattern-matching purposes, even though
they may be suggestive of a particular meaning.

The Redundancies section lists instructions and operand
values that may also be performed by other instructions in the

US 9,229,713 B2

45

instruction set. The symbol connecting the two forms is a
(<), which indicates that the two forms are mathematically
equivalent, both are legal, but the assembler does not trans-
form one into the other.

The Selection section lists instructions and equivalences
together in a tabular form that highlights the structure of the
instruction mnemonics.

The Format section lists (1) the assembler format, (2) the C
intrinsics format, (3) the bit-level instruction format, and (4)
a definition of bit-level instruction format fields that are not a
one-for-one match with named fields in the assembler format.

The Definition section gives a precise definition of each
basic instruction.

The Exceptions section lists exceptions that may be caused
by the execution of the instructions in this category.

10

46

US 9,229,713 B2

48

47

X X X +R1 Jutod-Sureo]] pasoay dnorn

X X o¢T pasioady dnorny

€81 2or1duy dnorn

X X €81 pasroady aerpaur] dnoroy

X €81 aerpauru] dnorn

X 781 aerpoury] Ado) dnorn

X X 781 yrrod-Suneor areduwio) dnorn

X X X 781 aredwo)) dnorin

X wl uesjoog dnorg

X 181 2ATEH PPV dnorn

X 9g] ppYy dnorn

6L1 ooedu] 01038

LL1 ooe(duy ojeIpaWIL] 2I0}S

X LL1 QJBTpOUIU] AI0}S

X 9/1 demg areduio)) 2jqno(g 21038

9LT 2101

X SLT 9¥EIpauIl] PEO]

PLI pEo]

TLT Jury-youstyg

€L1 JUTT SBIpawI] Youelyg

€L1 SYEpaWIU] YousIg

Ll SIEIPIUIW JUTH-[oustg

X Sv1 JTH yousrg

X Ll B H youelg

X pel Aemore0) YouRIg

X (Al uMO(] YouBIg

X X TL1 uod-Suneor] AIGISIA [RUONIPUOY) YOURIL

X 1L1 Ju10g-SUTIEO]] TEUOHIPUOY) YoukIg

X 0L [UONIPUOT Fously

0LT ToLRy qousIg

X 691 Jord yousrg

X 691 qousrg

X X 691 ATBUIO], SSQIPPY

X X X 891 SYEIpaUIU] YIUS SSAIPPY

X X 891 WEDANS SIEIPIWU] Y] YIUS SSAPPY

X X 891 PPV 9TeIpallill] YT YIS SSaIPPY

X X X L91 Jutod-Suneol] YIS SSIppY

X X X L91 19§ $SaIppY

X X X 191 PISIOADY SSAIPPY

X X X 991 19§ JBIpall] SSAIPPY

X X X 991 POSIOAY SJRTPAUI] SSAIPPY

X X X 991 QJBTPAUIW] SSIPPY

X 997 ayerparuut] Adoy) ssaIppy

X X X 9T yrrod-3uneo] areduro)) ssaIppy

X X X coT areduro)) ssoIppy

X X X X 91 SSOIPPY

91 POATISOY SABMIY

uonRZI uornezI 28er1A11g xord JEIN Jurod u3is poudis pouSig ueeoog Adopn omd yms opmig Ad ey ppy 29eg SSB[D) UOTIONISU]
-ndo -UONIUAS - -Suneoly PaXIN -un -woy -HIAL -qns

QOUIAIJAY SSOID)

MoK K

I N

50

[ouRIg
ATRUIo], SSAIPPY

SIEIPWW] YIS SSAUPPY

WELANS 2B [PIWW] YT YIUS SSAIPPY
PPV 2B IpaW] Y] YIUS SSAIPPY
Jurod-SunEor] YIS SSIPPY

108 SSAIPPY

PISIOADY SSRIPPY

108 2IRTPAUIUI] SSAIPPY

PISI2AY 2IRTPOUI SSAIPPY
QJRTPAUII] SSAIPPY

ayerparuut] Adoy) ssaIppy
yrrod-3uneo] areduro)) ssaIppy
areduro)) ssaIppy

SSAIPPY
PoATOSYY SARM[Y

SSB[) U0NONISU]

oI

w

US 9,229,713 B2

[l
w

49

w
w

IIB[SUBL], 9PIM

UoMS SPIM

s10[eD) XIEIN A[ANMIA 9PIM
Jutod-Sutjeor xRN A[dDMA 9P
2JRTpaUI] J0BIIXA XIIRIN ATATNIA 2PIp
Jrnxyg XU AJdDMA 2PIM
JOBIIXH QAJOATIOD) 9PIM
Jutod-Suteo],J ATeu) o[quIRSUg
Areun) ojquiasuyg

jutod-Suneor] ATRUIa], o[qUIRSUY
AreuIs], o[quasuyg

yrod-3uneo]] pasroasy o[quIRsug
Jutod-Suryeo]] 9or[duy o[quIasUy
ooeyduy o[quuesuyg

Jutod-Suneo]] 2[quIasuyg

2oe]du] 9JRTPAUIII] J0BIIXH 2]qUILSUH
9IRTPAUIII] JOBIIXF 2]qUIOSUH
9IRTPAUIII] JOBIIXF 2]qUIOSUH

10BIIXH 9]qUIOSUH

o[quuasuyg

ATRUIS], TRQSSOID)

9[ZZ1MG TBGSSOID)

S[YNYS TBGSSOID)

ooe]du] 9JRTPAUII] JOYS TRqSSOID)
QIRTPAUNI] JOYS TRqSSOID)

2oer1du] Teqssor)

ooeydu] prer reqssord)

PRI FEqssein

10BIIXH TRQSSOID)

TRQSSOID)

Areura], dnoin

aATeH 1enqng dnorn

Jornqng aeIpawu Y] YYS dnorn
PPV omIpounu] yo] Yiys dnorn

US 9,229,713 B2

52

51

w

MM M K

w

oI I

w

w

Jutod-Suryeo]] 9or[duy o[quIasUy
ooeyduy o[quuesuyg

Jutod-Suneo]] 2[quIasuyg

2oe]du] 9JRTPAUIII] J0BIIXH 2]qUILSUH
9IRTPAUIII] JOBIIXF 2]qUIOSUH
9IRTPAUIII] JOBIIXF 2]qUIOSUH
10BIIXH 9]qUIOSUH

o[quuasuyg

ATRUIS], TRQSSOID)

9[ZZ1MG TBGSSOID)

S[YNYS TBGSSOID)

ooe]du] 9JRTPAUII] JOYS TRqSSOID)
QIRTPAUNI] JOYS TRqSSOID)
2oer1du] Teqssor)

ooeydu] prer reqssord)

PIR1A T8qSSOID

10BIIXH TRQSSOID)

TRQSSOID)

Areura], dnoin

aATeH 1enqng dnorn

wenqng oerpaunuy Yo Yrqs dnorn
PPV oferpaunu] Yo Yrqs dnorn
Jutod-Sureo]] pasoay dnorn
pasioasy dnorn

2or1duy dnorn

pasiaaay ayetpouruy dnorn
ayerpouuy] dnorny

aerpoury] Ado) dnorn
yrrod-Suneor areduwio) dnorn
aredwo)) dnorin

ueajoog dnorn

2ARH PPV dnoin

ppy dnorn

2oer1duy 21038

oorTdu] ojeTpOUII] 210}S
2JRTpOUII] 210}S

demg areduio)) 2jqno(g 21038
21018

9¥EIpauIl] PEO]

pEo]

Jury-youstyg

JUTT SBIpawI] Youelyg
QIRTPAUIUI] [OURIE

9JRTPATLITU] JUTH-[OURIE

JTH yousrg

B H youelg

Aemoren) youerg

wmo(] ORI

Jutod-3ureor] AIIQISIA EUONIPUOY YoukIg
Juto J-Sureo] J [RUOTIPUO.) YoURIg
[UONIPUOT Fously

IoTITRY OURIg

Jorg YoURIg

penunuod-

US 9,229,713 B2

54

53

8o or pI do jesgoarmpr do /41 2oeduy o1eTpeI] 21035

1es[j0 o1 pI do Jesgoorpr do //7 2JRTpOUII] 210}S

do 0 qr oI pI MONIN'S qrorppr do 971 demg areduio)) 2jqno(g 21038

do 1 qr o1 pI MONIIN'S grorprdo 977 21018

1es[j0 o1 pI do jesgo‘or=pr do ¢/ 9JRTPAUII] PrO]

do ! qt of px AONIN"T qror=prdo /] pEo]

JANITd 0 o1 px AONIN'd JI=PIZINITA IL1 Jury-youstyg

lesgo T2NITE PBEITINITE LT JUTT SBIpawI] Youelyg

1es[j0 1d pSEirg €41 QIRTPAUIUI] [OURIE

10818149UN00

1osjo mos s TLNIHd PPEATINIHG TLT SIEIPIUIW JUTH-[oustg

INIHd s mos px AONIN'd prmeo’ppeq INIH'E SP1 JTH yousrg

Jovad 0 0 0 JONIN'd ITvHd L1 B H youelg

41vod qt 1 0 AONIN'd GTHIvVO'd pEl Aemo1eD) YOURIL

Nmoad 0 0 px AONIN'd PINMOdd CL1 umo(J youeryg

utod-Surneor

8o or pI do W8meyprorde /1 1ITIQISTA [RUOTIPUCY) [oURIG

8o or pI do wp8myorprdo /1 o d-Surneo] [eUOHIPUO)) YoURIg

8o or pI do wp8myorprdo (L1 [RUOTIPUC) [oURIg

qargavda'd 0 0 px AONIN'd prydravdad 0Ll ToLRy qousIg

Jovad 0 0 0 AONIN'd Jqovd'd 691 Jord yousrg

d 0 0 px AONIN'd prd 691 qousrg

BT qr o1 pI XON'V qrorpl=el X(IN'V ~ 691 ATRUID], SSRIPPY

do UTIITS o1 pI MONIN'Y urisor=pr do §9T 9IRTPAUIII] YIS SSAIPPY

us do qt of px AONIN'Y or'fgi=prdo 91 BNANS AIIPAUI] YT YIYS SSAPPY

us do qt of px AONIN'Y rqror=pr do 891 PPV 9TeIpallill] YT YIS SSaIPPY

do Eh or pr YONIN'Y orq=pr do /91 Jurod-SunEor] YIS SSIPPY

do qr o1 pI MONIN'Y or‘gr=pr do /97 108 SSAIPPY

do qr o1 pI MONIN'Y or‘gr=pr do /97 PISIOADY SSRIPPY

Tt o1 pI do or‘wur=pr do 99T 108 2IRTPAUIUI] SSAIPPY

Tt o1 pI do or‘wur=pr do 99T PISI2AY 2IRTPOUI SSAIPPY

Tt o1 pI do umror=pr do 99T QJRTPAUII] SSAIPPY

g px T'AJOO'V wii=pI FAJOO'V 991 aperperury £do)) sSaIppy

WOV do oI pI MONIN'V orprdo ¢971 yrrod-3uneo] areduro)) ssaIppy

WOV do oI pI MONIN'V orper-do 691 areduro)) ssaIppy

do qr o1 pI MONIN'Y I‘or=pr do 9] SSAIPPY

wy SHA'V wwlr SHY'V - ¥91 PaATasaY SABMTY

0T T ¢ ¥ €9.86 00 IT TI €I %I €T 91T LI 8T 61 OC 1T TT €T ¥CT ST 9T LT 8T 6T 0t I¢ 388 SSB[D uOnonISU]
20UDIOJY JRUIIO]

66 SYE[SUELL, 9PIM

L6 YOUME 9pIM

X 140! s10[e0) XIEIN A[ANMIA 9PIm

X 48 Jutod-Sureor] XL A[ANMIA 9PIM

X X X 011 2JRTpaUI] J0BIIXA XIIRIN ATATNIA 2PIp

X S0T JorIxY XU A[ANTA 2PIM

X LST JOBIIXH QAJOATIOD) 9PIM

X 961 Jutod-Suteo],J ATeu) o[quIRSUg

X X S61 ATBTI) S]qUIDSTH

orI jutod-Suneor] ATRUIa], o[qUIRSUY

X 61 ATBuIa], 2]qUIOSUH

X 6€T Jutod-Sunieo]] pesIossy o[quILsug

penunuod-

US 9,229,713 B2

56

55

zs8 0
BI
BI

1d do'm

s zs]

BT
zs TO'M
AIVNN<d
AIVNN<d
BT
BT
purdog
purdog
dog
purdog
s zs]
s zs]
BT
BT
dog
BT

BUBMST

do
zs do
zs do
zs do

dys3
dys3
BT
zs do
BT
pur do
qs do
qs do
purdo
do
do
g
g
g

WOOD
WOOD

pur do

do 1

qr
qr
qr
qr
qr
qr
qr
purdo
qr
qr
qr
qr
qr
qr
qr
qr
qr
qr
qr
qr
qr

BATOOT

qr
UTIITS
UTIITS

qr

dys8

dys8
qr
qr
qr
qr
qr
qr
qr
qr
qr

uprdo
do

qr
qr
qr
qr

zs
zs
zs

ol g
ol g
ol g
ol g
ol g
ol g
ol g
ol g
ol g
ol g
ol g
ol g
ol g
ol g
ol g
o
ol g
ol g
ol g
ol g
ol g

2T

2T
2T
2T
2T

21
2T
2T
2T
2T
2T
2T
2T
2T
2T
2T
2T
2T
2T

2T
2T

2T
2T
2T
2T

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

P

P
P
P
P

P
P
P
P
P
P
P
P
P
P
P
P
P
P

P
P

P
P
P
P

L
L

L

IOPIOWO' M
IOPIOWO' M
IOPIOWO' M

RPIOIONIN'M
Iopiodom
Iopiodom

RPIOIONIN'M

0o1d"q
az1sg
sorduog
uog
o01d Dy
o01d Dy
az1sg
oordg
dog
dog
dog
dog
az1sg
S LOHTHS'X

HTZZIMS'X

JTIINHSX
ILATHS'X
ILATHS'X

LAIHS'X

do'x
do'x
LOVILXIX
LATHS'X
XOAND
2z18'D)
2z18'D)
2z18'D)
o01d Dy
2z18'D)
2z18'D)
do'ny
do'ny
TAJOOD

o01d Dy
2z18'D)

NVATO0dD
9Z1S'D)
9Z1S'D)
JONIN'S

qI‘0I=pI 1opI10-9Z1s dopm
qI‘préor=er ropio-dopm
qI‘préor=er ropio-dopm
qr‘o1=pi1 ropio-oard-dom
1qI‘oI=pI IopI1o-oz1sy dom
qI‘préor=er ropio-dopm
qI‘0I=pI 1opI10-9Z1s dopm
or=p1 puroerd-dog
oI=pI 9z1s"dog
qréor‘pr=er sord-dog
qr‘or‘pr=er gnydog
or‘qr=p1 pur-oard-do-g
qror)pi oard-dog
qrorpi ozis'dog
qI‘or=pi1 puroerd-dog
qror@)pl purazis-dog
1‘qror=pI pur-ozis'dog
evI‘qrorg)pl dog
qror‘pr=er dog
qI‘or=p1 oz1s"do"q
qUorpr=er g IDATAS X
demstAdoor‘or=pI
AIZZIMS'X
[MA‘QIoI=pI
9CTHTAINHS'X
yrys‘ormpi azis'do X
Yrys‘or=pI az1s'do X
qIorp)pI ezis'do X
IysIozIsIOIp)ps
az1s8-do
yrysr‘ozisr‘or=pr oz1ss-do'x
QUOIpI=er JOVILXH X
qI‘or=p1 oz1s'do"xX
QIoI‘pI=8I XIN'D
21‘qr=p1 purazis'do'ny
or'rqi=p1 ozis'do'n
rqror=pi ozis'do'n
or‘qr=puroeid-don
o1‘qr=pi1 oz1s'do'y
qrorppi ozisdo'n
or‘wur=pir 9z1s'do
wr‘or=pr 9z1s'do

[=pIazZISTAJOO'D
o1‘px
puroard-do OO D

or'pr oz1s'do INOD'D
Jqnionmpr
NVATO0d D
qI'o1=p1 pur-ozis'do'n
qr'or=p1 oz1s'do'n
qrorppr do

66

L6

141!
[418!
(U188
Ul
LET
961
S6l
(48
6l

€61
6l
6¢€1
061
681
611
(44!
LET
681

1¢ST
881
881
L81

981
981

81
81
81
o€l
€81
€81
€81
81

81
81

i
181
o€l
6L1

STeISUBIL, OPIM
[OUMS 9PIM
s10[e0) XIEIN A[ANMIA 9PIm

Jutod-Sutjeor xRN A[dDMA 9P
SppIpau] PeIXH XHIBN A[ANMIA 9pIm
Jrnxyg XU AJdDMA 2PIM

JOBIIXH SAJOAUOD) IPTM

Jutod-Suteo],J ATeu) o[quIRSUg

Areun) ojquiasuyg

jutod-Suneor] ATRUIa], o[qUIRSUY

AreuIs], o[quasuyg

yrod-3uneo]] pasroasy o[quIRsug
Jutod-Suryeo]] 9or[duy o[quIasUy

ooeyduy o[quuesuyg
Jutod-Suneo]] 2[quIasuyg

2oe]du] 9JRTPAUIII] J0BIIXH 2]qUILSUH

QJBTPAUII] JORIIXF S]qUISSUT]
QJBTPAUII] JORIIXF S]qUISSUT]
JOBIXH 9[quIsuy

a[quuasuyg

ATRUIS], TRQSSOID)

9[ZZ1MG TBGSSOID)

S[YNYS TBGSSOID)

ooe]du] 9JRTPAUII] JOYS TRqSSOID)

QIRTPAUNI] JOYS TRqSSOID)
2oer1du] Teqssor)

ooeduy plo1] 18qSSOID)
PIR1A T8qSSOID

JOBIIXF TBQSSOID)
TBQSSOID)

Areura], dnoin

aATeH enqng dnorg

1oBIIQNS oRIpouII] Yo YIS dnorin
PPV omIpounu] yo] Yiys dnorn
Jutod-Sureo]] pasoay dnorn

pasioasy dnorn

2or1duy dnorn

pasroady aerpaur] dnoroy
ayerpouuy] dnorny
aerpoury] Ado) dnorn

yrrod-Suneor areduwio) dnorn

aredwo)) dnorin

ueajoog dnorn
2ATeH PPV dnorn

PPV dnorn
2oer1duy 21038

penunuod-

US 9,229,713 B2

Major Operation Codes
All instructions are 32 bits in size, and use the high order 8
bits to specify a major operation code.
5
31 2423 0
major other
8 24
10
The major field is filled with a value specified by the
following table (Blank table entries cause the Reserved
Instruction exception to occur.):
major operation code field values
MAJOR 0 32 64 96 128 160 192 224
0 ARES BEF16 LI16L ST16L XGEPOSIT EMULXI WMULMATXIL
1 AADDI BEF32 LI16B SI16B GADDI EMULADDXI WMULMATXIB
2 AADDLO BEF64 LII6AL SII6AL GADDLO ECONXI
3 AADDIUO BEF128 LII6AB SI16AB GADDIU.O EEXTRACTI
4 BLGF16 LI32L SI32L XDEPOSITU EMULX WMULMATXL
5 ASUBI BLGF32 LI32B SI32B GSUBI EMULADDX WMULMATXB
6 ASUBLO BLGF64 LI32AL SI32AL GSUBLO ECONX WMULMATGSL
7 ASUBIUO BLGF128 LI32AB SI32AB GSUBIU.O EEXTRACT WMULMATGSB
8 ASETEI BLF16 LI64L SI64L GSETEI XWITHDRAW ESCALADDF16
9 ASETNEI BLF32 LI64B SI64B GSETNEI ESCALADDF32
10 ASETANDEI BLF64 LIG4AL SIG4AL GSETANDEI ESCALADDF64
11 ASETANDNEI BLF128 LIG4AB SI64AB GSETANDNEI ESCALADDX
12 ASETLI BGEF16 LI128L SII28L GSETLI XWITHDRAWU EMULGS
13 ASETGEI BGEF32 LI128B SI128B GSETGEI EMULSUMGS
14 ASETLIU BGEF64 LI128AL SI128AL GSETLIU
15 ASETGEIU BGEF128 LII128AB SII128AB GSETGEIU
16 AADDI BE LIUI6L SASI64AL GANDI XDEPOSITM
17 ANANDI BNE LIUI6B SASIG4AB GNANDI
18 AORI BANDE LIUI6AL SCSIG4AL GORI
19 ANORI BANDNE LIUIGAB SCSIG4AB GNORI
20 AXORI BL LIU32L SMSI64AL GXORI XSWIZZLE
21 AMUX BGE LIU32B SMSI64AB GMUX
22 BLU LIU32AL SMUXI64A] GBOOLEAN
23 BGEU LIU32AB SMUXI64AB
24 ACOPYI BVF32 LIU64L GCOPYI XEXTRACT
25 BNVF32 LIU64B XSELECTS
26 BIF32 LIUG4AL WTRANSLATEL
27 BNIF32 LIUG4AB G8 WTRANSLATEB
28 BI LI8 SIS G16 XSHUFFLE E.16 WSWITCHL
29 BLINKI LIUS G32 XSHIFTI E.32 WSWITCHB
30 BHINTI G64 XSHIFT E.64 WMINORL
31 AMINOR BMINOR LMINOR SMINOR G128 E.128 WMINORB
Minor Operation Codes
F . . 31 24 23 65 0
or the major operation field values A.MINOR, B.MI- - -
| major | other | minor

NOR, L.MINOR, S.MINOR, G.8, G.16, G.32, G.64, G.128,

50

XSHIFTI, XSHIFT, E.8, E.16, E.32, E.64, E.128, W.MI-

NOR.L and W.MINOR.B, the lowest-order six bits in the

instruction specify a minor operation code:

following tables:

The minor field is filled with a value from one of the

minor operation code field values for A MINOR

AMINOR 0 8 16 24 32 40 48 56
0 AAND ASETE ASETEF16 ASHLI ASHLIADD ASETEF64
1 AADD AXOR ASETNE ASETLGF16 ASETLGF64
2 AADDO AOR ASETANDE ASETLF16 ASHLIO ASETLF64
3 AADDUO AANDN ASETANDNE ASETGEF16 ASHLIUO ASETGEF64
4 AORN ASETL/LZ ASETEF32 ASHLISUB
5 ASUB AXNOR ASETGE/GEZ ASETLGF32
6 ASUBO ANOR ASETLU/GZ ASETLF32 ASHRI
7 ASUBUO ANAND ASETGEU/LEZ ASETGEF32 ASHRIU ACOM

US 9,229,713 B2

-continued
minor operation code field values for BMINOR
B.MINOR 0 8 16 24 32 40 48 56
0 B
1 BLINK
2 BHINT
3 BDOWN
4 BGATE
5 BBACK
6 BHALT
7 BBARRIER
minor operation code field values for L.MINOR
L.MINOR 0 8 16 24 32 40 48 56
0 L16L L64L LUI6L LU64L
1 L16B L64B LU16B LU64B
2 L16AL L64AL LUI6AL LUG4AL
3 L16AB L64AB LUI6AB LUG4AB
4 L32L L128L LU32L L8
5 132B 1128B LU32B LU8
6 L32AL L128AL LU32AL
7 L32AB L128AB LU32AB
minor operation code field values for S.MINOR
S.MINOR 0 8 16 24 32 40 48 56
0 S16L S64L SAS64AL
1 S16B S64B SAS64AB
2 SI16AL S64AL SCS64AL SDCS64AL
3 S16AB S64AB SCS64AB SDCS64AB
4 S32L S128L SMS64AL S8
5 S32B S128B SMS64AB
6 S32AL S128AL SMUX64AL
7 S32AB S128AB SMUX64AB
minor operation code field values for G.size
Gsize 0 8 16 24 32 40 48 56
0 GSETE GSETEF GADDHN GSUBHN GSHLIADD GADDL
1 GADD GSETNE GSETLGF GADDHZ GSUBHZ GADDLU
2 GADDO GSETANDE GSETLF GADDHF GSUBHF GAAA
3 GADDUO GSETANDNE GSETGEF GADDHC GSUBHC
4 GSETL/LZ GSETEF.X GADDHUN GSUBHUN O0GSHLISUB GSUBL
5 GSUB GSETGE/GEZ GSETLGFE.X GADDHUZ GSUBHUZ GSUBLU
6 GSUBO GSETLU/GZ GSETLEX GADDHUF GSUBHUF GASA
7 GSUBUO GSETGEU/LEZ GSETGEF.X GADDHUC GSUBHUC GCOM
minor operation code field values for XSHIFTI
XSHIFTI 0 8 16 24 32 40 48 56
0 XSHLI XSHLIO XSHRI XEXPANDI XCOMPRESSI
1
2
3
4 XSHLMI XSHLIOU XSHRMI XSHRIU XROTLI XEXPANDIU XROTRI XCOMPRESSIU
5
6
7
minor operation code field values for XSHIFT
XSHIFT 0 8 16 24 32 40 48 56
0 XSHL XSHLO XSHR XEXPAND XCOMPRESS
1
2
3
4 XSHLM XSHLOU XSHRM XSHRU XROTL XEXPANDU XROTR XCOMPRESSU
5
6
7

US 9,229,713 B2
61 62

-continued

minor operation code field values for E.size or E.prec

E.size 0 8 16 24 32 40 48 56
0 EMULFN EMULADDEFN EADDEFN ESUBFN EMUL EMULADD EDIVFN ECON
1 EMULFZ EMULADDEFZ EADDEFZ ESUBFZ EMULU EMULADDU EDIVFZ ECONU
2 EMULFF EMULADDEFF EADDEFF ESUBFF EMULM EMULADDM EDIVFF ECONM
3 EMULFC EMULADDFC EADDFC ESUBFC EMULC EMULADDC EDIVFC ECONC
4 EMULFX EMULADDFX EADDFX ESUBFX EMULSUM EMULSUB EDIVFX EDIV
5 EMULF EMULADDF EADDF ESUBF EMULSUMU EMULSUBU EDIVF EDIVU
6 EMULCF EMULADDCF ECONF ECONCF EMULSUMM EMULSUBM EMUL- EMULP
SUMF
7 EMULSU- EMULSUBCF EMULSUMC EMULSUBC EMULSUBF EUNARY
MCF

minor operation code field values for W.MINOR.L or W.MINOR.B

W.MINOR.
order 0 8 16 24 32 40 48 56
0 WMULM- WMULM-
AT8 ATMS
1 WMULM- WMULM- WMULMATF16
AT16 ATM16
2 WMULM- WMULM- WMULMATF32
AT32 ATM32
3 WMULMATG64
4 WMULM- WMULM- WMULMATPS
ATUS ATCS
5 WMULM- WMULM- WMULMA- WMULMATP16
ATU16 ATC16 TCF16
6 WMULM- WMULMA- WMULMATP32
ATU32 TCF32
7
For the major operation field values EMUL.X.I, E.MU- For the major operation field values GCOPY], two bits in

L.ADD.XI, E.CONXI, EEXTRACTI, WMUL. the instruction specify an operand size:
MATX 1L, WMULMATX.I.B, another six bits in the
instruction specify a minor operation code, which indicates

operand size, rounding, and shift amount: 31 24 23 18 1716 15
| op | rd | sz | imm |
8 6 2 16
31 2423 65 0 40
[major | other | minor | For the major operation field values G.AND.I, G NAND.I,
8 13 6 G.NOR.I, G.ORI, GXOR.I, G,ADD.], G.ADD.1.O, G.AD-

D.IUO, G.SETAND.E.I, G.SET.AND.NE.I, G.SETEI,
G.SET.GE.I, G.SETL.I, GSETNEI G.SET.GEIU,

The minor field is filled with a value from the following .5 G.SET.L.LU, G.SUB.I, G.SUB.L.O, G.SUBLUO, two bits in
table, where the values are a tuple of the operand format (S the instruction specify an operand size:

[default], U or C) and group (symbol) size (8, 16,32, 64), and
shift amount (0, 1, 2, 3, -4, -5, -6, -7 plus group size), The

E.EXTRACT.I instruction provides for signed or unsigned 31 24 23 1817 12 1110 9

formats, while the other instructions provide for signed or s, | op | d | re | sz | imm
complex formats. The shift amount field value shown below is 8 6 6 2 10
the “4” value, which is the immediate field in the assembler

format.

minor operation code field values for EMULXI, EMULADDXI, ECONXI, EEXTRACTI,
WMULMATXIL, WMULMATXIB

>
&)
)
o

16 24 32 40 48 56

88 16,16 3232 64,64 U/C88 U/C1616 U/C3232 U/C 64,64
89 16,17 3233 64,65 U/C89 U/C1617 UC3233 U/C 64,65
8,10 16,18 3234 64,66 U/C810 U/C1618 U/C3234 UIC 64,66
8,11 16,19 3235 64,67 U/C81l U/IC1619 U/C3235 U 64,67
84 16,12 3228 64,60 U/C84 U/C1612 UC3228 UIC 64,60
85 16,13 3229 6461 U/CS85 U/C1613 UC3229 U/ 64,61
8,6 16,14 3230 64,62 U/C86 U/IC1614 UC3230 UK 64,62
87 16,15 3231 64,63 U/C87T U/C1615 UC3231 U/ 64,63

~ AW~ O

The sz field is filled with a value from the following table:

63

US 9,229,713 B2

64

compare operation code field values for G.COM.op.size

sz size G.COM 0 8 16 24 32 40 48 56
0 16 5 0 GCOME GCOMEF
1 32 1 GCOMNE GCOMLGF
2 64 2 GCOMANDE GCOMLF
3 128 3 GCOMANDNE GCOMGEF
operand size field values for G.COPY.I, GAND.I, GNAND.L, G.NOR.L, G.OR.I, GXOR.L, 4 GCOML GCOMEF X
G.ADD.I, GADD.LO, GADD.LUO, G.SETANDE.L, G.SETAND.NEL G.SETEL 10 5 GCOMGE GCOMLGF X
ggﬁ_};(l}%é G.SETLI, GSETNE.L G.SET.GELU,G.SETLIU, G.SUBI G.SUB.LO, 6 GCOMLU GCOMLE X
7 GCOMGEU GCOMGEF X
For the major operation field values E.8, E.16, E.32, E.64,
E.128, with minor operation field value E.UNARY, another
six bits in the instruction specify a unary operation code: 15 General Forms
The general forms of the instructions coded by a major
operation code are one of the following:
31 24 23 18 17 12 11 65 0 P &
| major rd e unary | minor
8 6 6 6 6
20 31 24 23 0
major offset
The unary field is filled with a value from the following 8
table:
unary operation code field values for EUNARY.size
E.UNARY 0 8 16 24 32 40 48 56
0 ESQRFN ESUMFN ESINKFN EFLOATFN EDEFLATEFN ESUM
1 ESQRFZ ESUMFZ ESINKFZ EFLOATFZ EDEFLATEFZ ESUMU ESINKFZD
2 ESQRFF ESUM FF ESINKFF EFLOATFF EDEFLATEFF ELOGMOST ESINKFFD
3 ESQRFC ESUMFC ESINKFC EFLOATFC EDEFLATEFC ELOGMOSTU ESINKFCD
4 ESQRFX ESUMFX ESINKFX EFLOATFX EDEFLATEFX ESUMC
5 ESQRF ESUMF ESINKF EFLOATF EDEFLATEF ESUMCF
6 ERSQRESTFX ERECESTFX EABSFX ENEGFX EINFLATEFX ESUMP ECOPYFX
7 ERSQRESTF ERECESTF ~ EABSF ENEGF EINFLATEF ECOPYF
For the major operation field values A.MINOR and G.MI- -continued
NOR, with minor operation field values A.COM and G.COM, 31 24 23 18 17 0
another six bits in the instruction specify a comparison opera- 2 | major d offset |
tion code: 8 6 18
31 24 23 18 17 12 11 0
| major rd re offset |
31 2423 1817 1211 63 0 T c e B
| major rd e compare | minor
45 31 24 23 18 17 12 11 65 0
8 6 6 6 6 ,
| major rd e b ra |
8 6 6 6 6
The compare field for A.COM is filled with a value from
the following table:
compare operation code field values for A.COM.op.size
ACOM 0 8 16 24 32 40 48 56
0 ACOME ACOMEF16 ACOMEF64
1 ACOMNE ACOMLGF16 ACOMLGF64
2 ACOMANDE ACOMLF16 ACOMLF64
3 ACOMANDNE ACOMGEF16 ACOMGEF64
4 ACOML ACOMEF32
5 ACOMGE ACOMLGF32
6 ACOMLU ACOMLF32
7 AXCOMGEU ACOMGEF32
65

The compare field G.COM is filled with a value from the

following table:

The general forms of the instructions coded by major and

minor operation codes are one of the following:

US 9,229,713 B2

65
31 24 23 18 17 12 11 65 0
| major rd | e b | minor |
8 6 6 6 6
31 24 23 18 17 12 11 65 0
| major rd e simm | minor |
8 6 6 6 6

The general form of the instructions coded by major,
minor, and unary operation codes is the following:

31 18 17 65 0
| major rd | e unary | minor |
8 6 6 6 6

24 23 12 11

General register rd is either a source general register or
destination general register, or both. General registers rc and
rb are always source general registers. General register ra is
either a source general register or a destination general reg-
ister.

Instruction Fetch

An exemplary embodiment of Instruction Fetch is shown
in FIG. 40A.

Perform Exception

An exemplary embodiment of Perform Exception is shown
in FIG. 40B.

Instruction Decode

An exemplary embodiment of Instruction Decode is shown
in FIG. 40C.

Wide Operations

Particular examples of wide operations which are defined
by the present invention include the Wide Switch instruction
that performs bit-level switching; the Wide Translate instruc-
tion which performs byte (or larger) table lookup; Wide Mul-
tiply Matrix; Wide Multiply Matrix Extract and Wide Multi-
ply Matrix Extract Immediate (discussed below), Wide
Multiply Matrix Floating-point, and Wide Multiply Matrix
Galois (also discussed below). While the discussion below
focuses on particular sizes for the exemplary instructions, it
will be appreciated that the invention is not limited to a
particular width.

Wide Switch

An exemplary embodiment of the Wide Switch instruction
is shown in FIGS. 12A-12F. In an exemplary embodiment,
the Wide Switch instruction rearranges the contents of up to
two registers (256 bits) at the bit level, producing a full-width
(128 bits) register result. To control the rearrangement, a wide
operand specified by a single register, consisting of eight bits
per bit position is used. For each result bit position, eight wide
operand bits for each bit position select which of the 256
possible source register bits to place in the result. When a
wide operand size smaller than 128 bytes is specified, the high
order bits of the memory operand are replaced with values
corresponding to the result bit position, so that the memory
operand specifies a bit selection within symbols of the oper-
and size, performing the same operation on each symbol.

In an exemplary embodiment, these instructions take an
specifier from a general register to fetch a large operand from
memory, a second operand from a general register, perform a
group of operations on partitions of bits in the operands, and
catenate the results together, placing the result in a general
register. An exemplary embodiment of the format 1210 of the
Wide Switch instruction is shown in FIG. 12A.

An exemplary embodiment of a schematic 1230 of the
Wide Switch instruction is shown in FIG. 12B. In an exem-

10

15

20

25

30

35

40

45

50

55

60

65

66

plary embodiment, the contents of register rc specifies a vir-
tual address and optionally an operand size, and a value of
specified size is loaded from memory.

The contents of general register rc are used as a wide
operand specifier. This specifier determines the virtual
address, wide operand size and shape for a wide operand.
Using the virtual address and operand size, a value of speci-
fied size is loaded from memory.

A second value is the catenated contents of registers rd and
rb. Eight corresponding bits from the memory value are used
to select a single result bit from the second value, for each
corresponding bit position. The group of results is catenated
and placed in register ra.

In an exemplary embodiment, the virtual address must
either be aligned to 128 bytes, or must be the sum of an
aligned address and one-half of the size of the memory oper-
and in bytes. An aligned address must be an exact multiple of
the size expressed in bytes. The size of the memory operand
must be 8, 16, 32, 64, or 128 bytes. If the address is not valid
an “access disallowed by virtual address™ exception occurs.

The wide-switch instructions (W.SWITCH.B,
W.SWITCH.L) perform a crossbar switch selection of a
maximum size limited by the extent of the memory operands
and by the size of the data path. The extent of the memory
operands is always specified as powers of two.

Referring to FIG. 12E, the wide operand specifier specifies
a memory operand extent (msize) by adding one-half the
desired memory operand extent in bytes to the specifier. Valid
specifiers for these instructions must specify msize bounded
by 64=msize<1024. The vertical size for the wide-switch
instruction is always 8, so wsize can be inferred to be
wsize=msize/8, bounded by 8=wsize<128. Exceeding these
bounds raises the OperandBoundary exception.

The virtual addresses of the wide operands must be
aligned, that is, the byte addresses must be an exact multiple
of'the operand extent expressed in bytes. If the addresses are
not aligned the virtual address cannot be encoded into a valid
specifier. Some invalid specifiers cause an “Operand Bound-
ary” exception.

When a size smaller than 128 bits is specified, the high
order bits of the memory operand are replaced with values
corresponding to the bit position, so that the same memory
operand specifies a bit selection within symbols of the oper-
and size, and the same operation is performed on each sym-
bol.

In an exemplary embodiment, a wide switch
(W.SWITCH.L. or W.SWITCH.B) instruction specifies an
8-bit location for each result bit from the memory operand,
that selects one of the 256 bits represented by the catenated
contents of registers rd and rb.

An exemplary embodiment of the pseudocode 1250 of the
Wide Switch instruction is shown in FIG. 12C. An alternative
embodiment of the pseudocode of the Wide Switch instruc-
tion is shown in FIG. 12F. An exemplary embodiment of the
exceptions 1280 of the Wide Switch instruction is shown in
FIG. 12D.

Wide Translate

An exemplary embodiment of the Wide Translate instruc-
tion is shown in FIGS. 13A-13G. In an exemplary embodi-
ment, the Wide Translate instructions use a wide operand to
specify a table of depth up to 256 entries and width of up to
128 bits. The contents of a register is partitioned into operands
of one, two, four, or eight bytes, and the partitions are used to
select values from the table in parallel. The depth and width of
the table can be selected by specifying the size and shape of
the wide operand as described above.

US 9,229,713 B2

67

In an exemplary embodiment, these instructions take an
specifier from a general register to fetch a large operand from
memory, a second operand from a general register, perform a
group of operations on partitions of bits in the operands, and
catenate the results together, placing the result in a general
register. An exemplary embodiment of the format 1310 of the
Wide Translate instruction is shown in FIG. 13A.

An exemplary embodiment of the schematic 1330 of the
Wide Translate instruction is shown in FIG. 13B. In an exem-
plary embodiment, the contents of register rc is used as a
virtual address, and a value of specified size is loaded from
memory.

The contents of general register rc are used as a wide
operand specifier. This specifier determines the virtual
address, wide operand size and shape for a wide operand.
Using the virtual address and operand size, a value of speci-
fied size is loaded from memory.

A second value is the contents of register rb. The values are
partitioned into groups of operands of a size specified. The
low-order bytes of the second group of values are used as
addresses to choose entries from one or more tables con-
structed from the first value, producing a group of values. The
group of results is catenated and placed in register rd.

In an exemplary embodiment, by default, the total width of
tables is 128 bits; and a total table width of 128, 64,32, 16 or
8 bits, but not less than the group size may be specified by
adding the desired total table width in bytes to the specified
address: 16, 8, 4, 2, or 1. When fewer than 128 bits are
specified, the tables repeat to fill the 128 bit width.

In an exemplary embodiment, the default depth of each
table is 256 entries, or in bytes is 32 times the group size in
bits. An operation may specify 4, 8, 16, 32, 64, 128 or 256
entry tables, by adding one half of the memory operand size
to the address.

The wide-translate instructions (W.TRANSLATE.L,
W.TRANSLATE.B) perform a partitioned vector translation
of a maximum size limited by the extent of the memory
operands, and by the size of the data path. The extent, size and
shape parameters of the memory operands are always speci-
fied as powers of two.

Referring to FIGS. 13E, the wide operand specifier speci-
fies a memory operand extent (msize) by adding one-half the
desired memory operand extent in bytes to the specifier. The
wide operand specifier specifies a memory operand shape by
adding the desired width in bytes to the specifier. The height
of'the memory operand (vsize) can be inferred by dividing the
operand extent (msize) by the operand width (wsize). Valid
specifiers for these instructions must specify wsize bounded
by gsizeswsize=<128, and vsize bounded by 4=<vsize<2857°,
SO msize=wsize*vsize is bounded by
4*wsize=msize=22""**wsize. Exceeding these bounds raises
the OperandBoundary exception.

The virtual addresses of the wide operands must be
aligned, that is, the byte addresses must be an exact multiple
of'the operand extent expressed in bytes. If the addresses are
not aligned the virtual address cannot be encoded into a valid
specifier. Some invalid specifiers cause an “Operand Bound-
ary” exception.

Table index values are masked to ensure that only the
specified portion of the table is used. Tables with just 2 entries
cannot be specified; if 2-entry tables are desired, it is recom-
mended to load the entries into registers and use G.MUX to
select the table entries.

In an exemplary embodiment, failing to initialize the entire
table is a potential security hole, as an instruction in with a
small-depth table could access table entries previously ini-
tialized by an instruction with a large-depth table. This secu-

20

40

45

68

rity hole may be closed either by initializing the entire table,
even if extra cycles are required, or by masking the index bits
so that only the initialized portion of the table is used. An
exemplary embodiment may initialize the entire table with no
penalty in cycles by writing to as many as 128 table entries at
once. Initializing the entire table with writes to only one entry
at a time requires writing 256 cycles, even when the table is
smaller. Masking the index bits is the preferred solution.

In an exemplary embodiment, masking the index bits sug-
gests that this instruction, for tables larger than 256 entries,
may be extended to a general-purpose memory translate func-
tion where the processor performs enough independent load
operations to fill the 128 bits. Thus, the 16, 32, and 64 bit
versions of this function perform equivalent of 8, 4, 2 with-
draw, 8, 4, or 2 load-indexed and 7, 3, or 1 group-extract
instructions. In other words, this instruction can be as pow-
erful as 23, 11, or 5 previously existing instructions. The 8-bit
version is a single cycle operation replacing 47 existing
instructions, so these extensions are not as powerful, but
nonetheless, this is at least a 50% improvement on a 2-issue
processor, even with one cycle per load timing. To make this
possible, the default table size becomes 65536, 2732 and 2”64
for 16, 32 and 64-bit versions of the instruction.

In an exemplary embodiment, for the big-endian version of
this instruction, in the definition below, the contents of regis-
ter rb is complemented. This reflects a desire to organize the
table so that the lowest addressed table entries are selected
when the index is zero. In the logical implementation,
complementing the index can be avoided by loading the table
memory differently for big-endian and little-endian versions;
specifically by loading the table into memory so that the
highest-addressed table entries are selected when the index is
zero for a big-endian version of the instruction. In an exem-
plary embodiment of the logical implementation, comple-
menting the index can be avoided by loading the table
memory differently for big-endian and little-endian versions.
In order to avoid complementing the index, the table memory
is loaded differently for big-endian versions of the instruction
by complementing the addresses at which table entries are
written into the table for a big-endian version of the instruc-
tion.

This instruction can perform translations for tables larger
than 256 entries when the group size is greater than 8. For
tables of this size, copying the wide operand into separate
memories to allow simultaneous access at differing addresses
is likely to be prohibitive. However, this operation can be
performed by producing a stream of addresses in serial fash-
ion to the main memory system, or with whatever degree of
parallelism the memory system can provide, such as by inter-
leaving, pipelining or multiple-porting. To make this pos-
sible, the maximum table size becomes 65536, 232 and 264
for 16, 32 and 64-bit versions of the instruction.

An implementation may limit the extent, width or depth of
operands due to limits on the operand memory or cache, and
thereby cause a ReservedlInstruction exception. For example,
it may limit the depth of translation tables to 256.

In an exemplary embodiment, the virtual address must
either be aligned to 4096 bytes, or must be the sum of an
aligned address and one-half of the size of the memory oper-
and in bytes and/or the desired total table width in bytes. An
aligned address must be an exact multiple of the size
expressed in bytes. The size of the memory operand must be
a power of two from 4 to 4096 bytes, but must be at least 4
times the group size and 4 times the total table width. If the
address is not valid an “access disallowed by virtual address”
exception occurs.

US 9,229,713 B2

69

In an exemplary embodiment, a wide translate
(W.TRANSLATE.8.L. or TRANSLATE.8.B) instruction
specifies a translation table of 16 entries (vsize=16) in depth,
a group size of 1 byte (gsize=8 bits), and a width of 8 bytes
(wsize=64 bits) as shown in FIG. 13F. The wide operand
specifier specifies a total table size (msize=1024
bits=vsize*wsize) and a table width (wsize=64 bits) by add-
ing one half of the size in bytes of the table (64) and adding the
size in bytes of the table width (8) to the table address in the
wide operand specifier. The operation will create duplicates
of'this table in the upper and lower 64 bits of the data path, so
that 128 bits of operand are processed at once, yielding a 128
bit result. The operation uses the low-order 4 bits of each byte
of the contents of general register rb as an address into
memory containing byte-wide slices of the wide operand,
producing byte results, which are catenated and placed into
register rd.

An exemplary embodiment of the pseudocode 1350 of the
Wide Translate instruction is shown in FIG. 13C. An alterna-
tive embodiment of the pseudocode of the Wide Translate
instruction is shown in FIG. 13G. An exemplary embodiment
of the exceptions 1380 of the Wide Translate instruction is
shown in FIG. 13D.

Wide Multiply Matrix

An exemplary embodiment of the Wide Multiply Matrix
instruction is shown in FIGS. 14A-14G. In an exemplary
embodiment, the Wide Multiply Matrix instructions use a
wide operand to specity a matrix of values of width up to 64
bits (one half of register file and data path width) and depth of
up to 128 bits/symbol size. The contents of a general register
(128 bits) is used as a source operand, partitioned into a vector
of' symbols, and multiplied with the matrix, producing a vec-
tor of width up to 128 bits of symbols of twice the size of the
source operand symbols. The width and depth of the matrix
can be selected by specifying the size and shape of the wide
operand as described above. Controls within the instruction,
allow specification of signed, mixed signed, unsigned, com-
plex, or polynomial operands.

In an exemplary embodiment, these instructions take a
specifier address from a general register to fetch a large oper-
and from memory, a second operand from a general register,
perform a group of operations on partitions of bits in the
operands, and catenate the results together, placing the result
in a general register. An exemplary embodiment of the format
1410 of the Wide Multiply Matrix instruction is shown in
FIG. 14A.

An exemplary embodiment of the schematics 1430 and
1460 of the Wide Multiply Matrix instruction is shown in
FIGS. 14B and 14C. In an exemplary embodiment, the con-
tents of register rc is used as a virtual address, and a value of
specified size is loaded from memory.

The contents of general register rc are used as a wide
operand specifier. This specifier determines the virtual
address, wide operand size and shape for a wide operand.
Using the virtual address and operand size a value of specified
size is loaded from memory.

A second value is the contents of register rb. The values are
partitioned into groups of operands of the size specified. The
second values are multiplied with the first values, then
summed in columns, producing a group of result values, each
of'which is twice the size specified. The group of result values
is catenated and placed in register rd.

In an exemplary embodiment, the wide-multiply-matrix
instructions (W.MUL.MAT, W.MUL.MAT.C, W.MUL.
MAT.M, WMUL.MAT.P, WMUL.MAT.U) perform a parti-
tioned array multiply of up to 8192 bits, that is 64x128 bits.
The width of the array can be limited to 64, 32, or 16 bits, but

10

15

20

25

30

35

40

45

50

55

60

65

70

not smaller than twice the group size, by adding one half the
desired size in bytes to the virtual address operand: 4, 2, or 1.
The array can be limited vertically to 128, 64, 32, or 16 bits,
but not smaller than twice the group size, by adding one-half
the desired memory operand size in bytes to the virtual
address operand.

The wide-multiply-matrix instructions (W.MUL.MAT,
W.MUL.MAT.C, W.MUL.MAT.M, W.MUL.MAT.P,
W.MUL.MAT.U) perform a partitioned array multiply of a
maximum size limited by the extent of the memory operands,
and by the size of the data path. The extent, size and shape
parameters of the memory operands are always specified as
powers of two.

Referring to FIG. 14F, the wide operand specifier specifies
a memory operand extent (msize) by adding one-half the
desired memory operand extent in bytes to the specifier. The
wide operand specifier specifies a memory operand shape by
adding one-halfthe desired width in bytes to the specifier. The
height of the memory operand (vsize) can be inferred by
dividing the operand extent (msize) by the operand width
(wsize). Valid specifiers for these instructions must specify
wsize bounded by
max(16,gsize*(1+n))=<wsize<64, and msize bounded by
2*wsize=msize=(128/(gsize*(1+n))*wsize, where n=0 for
real operands (W.MUL.MAT, WMUL.MAT.M, W.MUL.
MAT.P, WMUL.MAT.U) and n=1 for complex operands
(W.MUL.MAT.C). Exceeding these bounds raises the Oper-
andBoundary exception.

In an exemplary embodiment, the virtual address must
either be aligned to 1024/gsize bytes (or 512/gsize for
W.MUL.MAT.C) (with gsize measured in bits), or must be the
sum of an aligned address and one half of the size of the
memory operand in bytes and/or one quarter of the size of the
result in bytes. An aligned address must be an exact multiple
of the size expressed in bytes. If the address is not valid an
“access disallowed by virtual address” exception occurs.

The virtual addresses of the wide operands must be
aligned, that is, the byte addresses must be an exact multiple
of'the operand extent expressed in bytes. If the addresses are
not aligned the virtual address cannot be encoded into a valid
specifier. Some invalid specifiers cause an “Operand Bound-
ary” exception

In an exemplary embodiment, a wide multiply octlets
instruction (W.MUL.MAT.type.64, type=NONE M U P) is
not implemented and causes a reserved instruction exception,
as an ensemble-multiply-sum-octlets instruction (E.MUL.
SUM.type.64) performs the same operation except that the
multiplier is sourced from a 128-bit register rather than
memory. Similarly, instead of wide-multiply-complex-qua-
dlets instruction (W.MUL.MAT.C.32), one should use an
ensemble-multiply-complex-quadlets instruction (E.MUL.
SUM.C.32).

As shown in FIG. 14B, an exemplary embodiment of a
wide-multiply-doublets instruction (W.MUL.MAT, W.MUL.
MATM, WMULMAT.P, WMULMAT.U) multiplies
memory [m31 m30 . .. ml mO] with vector [hgfedcb a,
yielding products [hm31+gm27+ . . . +bm7+am3 hm28+
gm24+ . .. +bm4+amO].

As shown in FIG. 14C, an exemplary embodiment of a
wide-multiply-matrix-complex-doublets instruction
(W.MUL.MAT.C) multiplies memory [m15 m14 ... ml mO]
with vector [h g fe d cb a], yielding products [hm14+gm
15+ . . . +bm2+am3 . . . hm12+gml3+ . . . +bmO+aml
hm13+gm12+ . .. bml+amO].

An exemplary embodiment of the pseudocode 1480 of the
Wide Multiply Matrix instruction is shown in FIG. 14D. An
alternative embodiment of the pseudocode of the Wide Mul-

US 9,229,713 B2

71

tiply Matrix instruction is shown in 14G. An exemplary
embodiment of the exceptions 1490 of the Wide Multiply
Matrix instruction is shown in FIG. 14E.

Wide Multiply Matrix Extract

An exemplary embodiment of the Wide Multiply Matrix
Extract instruction is shown in FIGS. 15A-15H. In an exem-
plary embodiment, the Wide Multiply Matrix Extract instruc-
tions use a wide operand to specify a matrix of value of width
up to 128 bits (full width of register file and data path) and
depth of up to 128 bits/symbol size. The contents of a general
register (128 bits) is used as a source operand, partitioned into
a vector of symbols, and multiplied with the matrix, produc-
ing a vector of width up to 256 bits of symbols of twice the
size of the source operand symbols plus additional bits to
represent the sums of products without overflow. The results
are then extracted in a manner described below (Enhanced
Multiply Bandwidth by Result Extraction), as controlled by
the contents of a general register specified by the instruction.
The general register also specifies the format of the operands:
signed, mixed-signed, unsigned, and complex as well as the
size of the operands, byte (8 bit), doublet (16 bit), quadlet (32
bit), or hexlet (64 bit).

In an exemplary embodiment, these instructions take an
specifier from a general register to fetch a large operand from
memory, a second operand from a general register, perform a
group of operations on partitions of bits in the operands, and
catenate the results together, placing the result in a general
register. An exemplary embodiment of the format 1510 of the
Wide Multiply Matrix Extract instruction is shown in FIG.
15A.

An exemplary embodiment of the schematics 1530 and
1560 of the Wide Multiply Matrix Extract instruction is
shown in FIGS. 15C and 14D. In an exemplary embodiment,
the contents of register rc is used as a virtual address, and a
value of specified size is loaded from memory.

The contents of general register rc are used as a wide
operand specifier. This specifier determines the virtual
address, wide operand size and shape for a wide operands.
Using the virtual address and operand size a value of specified
size is loaded from memory.

A second value is the contents of register rd. The group size
and other parameters are specified from the contents of reg-
ister rb. The values are partitioned into groups of operands of
the size specified and are multiplied and summed, producing
agroup of values. The group of values is rounded, and limited,
and extracted as specified, yielding a group of results which is
the size specified. The group of results is catenated and placed
in register ra.

In an exemplary embodiment, the size of this operation is
determined from the contents of register rb. The multiplier
usage is constant, but the memory operand size is inversely
related to the group size. Presumably this can be checked for
cache validity.

In an exemplary embodiment, low order bits of re are used
to designate a size, which must be consistent with the group
size. Because the memory operand is cached, the size can also
be cached, thus eliminating the time required to decode the
size, whether from rb or from rc.

In an exemplary embodiment, the wide multiply matrix
extract instructions (W.MUL.MAT.X.B, WMUL.MAT.X.L))
perform a partitioned array multiply of up to 16384 bits, that
is 128x128 bits. The width of the array can be limited to 128,
64,32, or 16 bits, but not smaller than twice the group size, by
adding one half the desired size in bytes to the virtual address
operand: 8, 4, 2, or 1. The array can be limited vertically to
128, 64, 32, or 16 bits, but not smaller than twice the group

10

15

20

25

30

35

40

45

50

55

60

65

72

size, by adding one half the desired memory operand size in
bytes to the virtual address operand.

The size of partitioned operands or group size (gsize) for
this operation is determined from the contents of general
register rb. We also use low order bits of rc to designate a
memory operand width (wsize), which must be consistent
with the group size. When the memory operand is cached, the
group size and other parameters can also be cached, thus
eliminating decode time in critical paths from rb or rc.

The wide-multiply-matrix-extract instructions (W.MUL.
MAT.X.B, WMUL.MAT.X L) perform a partitioned array
multiply of a maximum size limited by the extent of the
memory operands, and by the size of the data path. The extent,
size and shape parameters of the memory operands are always
specified as powers of two.

Referring to FI1G. 15G, the wide operand specifier specifies
a memory operand extent (msize) by adding one-half the
desired memory operand extent in bytes to the specifier. The
wide operand specifier specifies a memory operand shape by
adding one-halfthe desired width in bytes to the specifier, The
height of the memory operand (vsize) can be inferred by
dividing the operand extent (msize) by the operand width,
(wsize). Valid specifiers for these instructions must specify
wsize bounded by 16=wsize<128, and msize bounded by
2*wsize=msize=16*wsize. Exceeding these bounds raises
the OperandBoundary exception.

As shown in FIG. 15B, in an exemplary embodiment, bits
31... 0 of the contents of register rb specifies several param-
eters which control the manner in which data is extracted. The
position and default values of the control fields allows for the
source position to be added to a fixed control value for
dynamic computation, and allows for the lower 16 bits of the
control field to be set for some of the simpler extract cases by
a single GCOPYT instruction.

Inan exemplary embodiment, the table below describes the
meaning of each label:

label bits meaning

fsize 8 field size

dpos 8 destination position

X 1 reserved

s 1 signed vs. unsigned

n 1 complex vs. real multiplication

m 1 mixed-sign vs. same-sign multiplication
1 1 saturation vs. truncation

md 2 rounding

gssp 9 group size and source position

In an exemplary embodiment, the 9 bit gssp field encodes
both the group size, gsize, and source position, spos, accord-
ing to the formula gssp=512-4*gsize+spos. The group size,
gsize, is a power of two in the range 1 . . . 128. The source
position, spos, is in the range O . . . (2*gsize)-1.

In an exemplary embodiment, the values in the s, n, m, t,
and rnd fields have the following meaning:

values s n m I rnd
0 unsigned real same-sign truncate F
1 signed complex mixed-sign saturate Z
2 N
3 C

The specified group size (gsize) and type (n: real versus
complex) are limited to valid values, but invalid values are
silently mapped to valid ones. The group size (gsize) is itself

US 9,229,713 B2

73

limited by 8=gsize<128/vsize and gsizeswsize. The type
specifier (n) is ignored and a real type is assumed if the wsize
is not at least twice gsize, or if the vsize is greater than
64/gsize.

In an exemplary embodiment, the virtual address of the
wide operands must be aligned, that is, the byte address must
be an exact multiple of the operand extent expressed in bytes.
If the addresses are not aligned the virtual address cannot be
encoded into a valid specifier. Some invalid specifiers cause
an “Operand Boundary” exception.

In an exemplary embodiment, Z (zero) rounding is not
defined for unsigned extract operations, so F (floor) rounding
is substituted, which will properly round unsigned results
downward and a ReservedInstruction exception is raised if
attempted.

As shown in FIG. 15C, an exemplary embodiment of a
wide-multiply-matrix-extract-doublets instruction (W.MUL.
MAT.X.B or WMUL.MAT.X.I) multiplies memory [m63
m62 m61 ... m2 ml mO] with vector [h g fedcb a], yielding
the products

[am7+bm15+cm23+dm31+em39+fm47+gmS55+hmo63 . . .

am2+bm10+cm18+dm26+em34+fm42+gmS50+hm58
aml+bm9+cm17+dm25+em33+fm41+gm49+hmS57 amO+
bm8+cm16+dm24+em32+fm40+gm48+hm56], rounded
and limited as specified.

As shown in FIG. 15D, an exemplary embodiment of a
wide-multiply-matrix-extract-complex-doublets instruction
(W.MUL.MAT.X with n set in rb) multiplies memory [m31
m30m29... m2 ml mO] withvector [h g fedcb a], yielding
the products [am7+bm6+cm15+dm14+em23+fm22+gm31+
hm30 . . . am2-bm3+cm10-dml11+em18-fm19+gm26-
hm?27 aml+bmO+cm9+dm8+em17+fm16+gm25+hm24
amO-bm1+cm8-dm9+em16—f17+gm24-hm25]; rounded
and limited as specified.

An exemplary embodiment of the pseudocode 1580 of the
Wide Multiply Matrix Extract instruction is shown in FIG.
15E. An alternative embodiment of the pseudocode of the
Wide Multiply Matrix Extract instruction is shown in FIG.
15H. An exemplary embodiment of the exceptions 1590 of
the Wide Multiply Matrix Extract instruction is shown in F1G.
15F.

Wide Multiply Matrix Extract Immediate

An exemplary embodiment of the Wide Multiply Matrix
Extract Immediate instruction is shownin FIGS. 16 A-16G. In
an exemplary embodiment, the Wide Multiply Matrix Extract
Immediate instructions perform the same function as above,
except that the extraction, operand format and size is con-
trolled by fields in the instruction. This form encodes com-
mon forms of the above instruction without the need to ini-
tialize a register with the required control information.
Controls within the instruction allow specification of signed,
mixed signed, unsigned, and complex operands.

In an exemplary embodiment, these instructions take
a-specifier from a general register to fetch a large operand
from memory, a second operand from a general register,
perform a group of operations on partitions of bits in the
operands, and catenate the results together, placing the result
in a general register. An exemplary embodiment of the format
1610 of the Wide Multiply Matrix Extract Immediate instruc-
tion is shown in FIG. 16A.

An exemplary embodiment of the schematics 1630 and
1660 of the Wide Multiply Matrix Extract Immediate instruc-
tionis shown in FIGS. 16B and 16C. In an exemplary embodi-
ment, the contents of register rc is used as a virtual address,
and a value of specified size is loaded from memory.

The contents of general register rc are used as a wide
operand specifier. This specifier determines the virtual

10

15

20

25

30

35

40

45

50

55

60

65

74

address, wide operand size and shape for a wide operand.
Using the virtual address and operand size, a value of speci-
fied size is loaded from memory.

A second value is the contents of register rb. The values are
partitioned into groups of operands of the size specified and
are multiplied and summed in columns; producing a group of
sums. The group of sums is rounded, limited, and extracted as
specified, yielding a group of results, each of which is the size
specified. The group of results is catenated and placed in
register rd. All results are signed, N (nearest) rounding is
used, and all results are limited to maximum representable
signed values.

In an exemplary embodiment, the wide-multiply-extract-
immediate-matrix instructions (W.MUL.MAT.X.I, W.MUL.
MAT.X.1.C) perform a partitioned array multiply of up to
16384 bits, that is 128x128 bits. The width of the array can be
limited to 128, 64, 32, or 16 bits, but not smaller than twice the
group size, by adding one-half the desired size in bytes to the
virtual address operand: 8, 4, 2, or 1. The array can be limited
vertically to 128, 64,32, or 16 bits, but not smaller than twice
the group size, by adding one half the desired memory oper-
and size in bytes to the virtual address operand.

The wide-multiply-matrix-extract-immediate instructions
(W.MUL.MAT.X.I, WMUL.MAT.X.I.C) perform a parti-
tioned array multiply of a maximum size limited by the extent
of'the memory operands, and by the size of the data path. The
extent, size and shape parameters of the memory operands are
always specified as powers of two.

Referring to FIG. 16F, the wide operand specifier specifies
a memory operand extent (msize) by adding one-half the
desired memory operand extent in bytes to the specifier. The
wide operand specifier specifies a memory operand shape by
adding one-halfthe desired width in bytes to the specifier. The
height of the memory operand (vsize) can be inferred by
dividing the operand extent (msize) by the operand width
(wsize). Valid specifiers for these instructions must specify
wsize bounded by
max(16,gsize*(1+n)=wsize=<128, and msize bounded by
2*wsize=msize(128/gsize™(1+4n))*wsize, where n= for real
operands (W.MUL.MAT.X.I) and n=1 for complex operands
(W.MUL.MAT.X.1.C). Exceeding these bounds raises the
OperandBoundary exception.

In an exemplary embodiment, the virtual address must
either be aligned to 2048/gsize bytes (or 1024/gsize for
W.MUL.MAT.X.1.C), or must be the sum of an aligned
address and one-half of the size of the memory operand in
bytes and/or one half of the size of the result in bytes. An
aligned address must be an exact multiple of the size
expressed in bytes. If the address is not valid an “access
disallowed by virtual address” exception occurs.

The virtual addresses of the wide operands must be
aligned, that is, the byte addresses must be an exact multiple
of'the operand extent expressed in bytes. If the addresses are
not aligned the virtual address cannot be encoded into a valid
specifier. Some invalid specifiers cause an “Operand Bound-
ary” exception.

As shown in FIG. 16B, an exemplary embodiment of a
wide-multiply-extract-immediate-matrix-doublets instruc-
tion (W.MUL.MAT.X.1.16) multiplies memory [m63 m62
m61 ... m2 ml mO] with vector [h gfedcb a], yielding the
products

[am7+bm15+cm23+dm3 1+em39+fm47+gm55+hmo63 . . .

am2+bm10+cm18+dm26+em34+fm42+gm5S50+hm58

aml+bm9+cm17+dm25+em33+fm41+gm49+hm5S7
amO+bm8+cm16+dm24+em32+fm40+gm48+hm56],
rounded and limited as specified.

US 9,229,713 B2

75

As shown in FIG. 16C, an exemplary embodiment of a
wide-multiply-matrix-extract-immediate-complex-doublets
instruction (W.MUL.MAT.X.1.C.16) multiplies memory
[m31 m30 m29 ... m2 m1 mO] with vector [hgfedcbal,
yielding the products [am7+bm6+cmlS+dml4+em23+

fm224+gm31+hm30 . . . am2-bm3+cm10-dm11+em18-
fm194gm26-hm27 aml+bmO+cm9+dm8+em17+fm16+
gm?25+hm?24 amO-bm1+cm8-dm9+em16—f17+gm?24—

hm25], rounded and limited as specified.

An exemplary embodiment of the pseudocode 1680 of the
Wide Multiply Matrix Extract Immediate instruction is
shown in FIG. 16D. An exemplary embodiment of the excep-
tions 1590 of the Wide Multiply Matrix Extract Immediate
instruction is shown in FIG. 16E.

Wide Multiply Matrix Floating-Point

An exemplary embodiment of the Wide Multiply Matrix
Floating-point instruction is shown in FIGS. 17A-17G. In an
exemplary embodiment, the Wide Multiply Matrix Floating-
point instructions perform a matrix multiply in the same form
as above, except that the multiplies and additions are per-
formed in floating-point arithmetic. Sizes of half (16-bit),
single (32-bit), double (64-bit), and complex sizes of half,
single and double can be specified within the instruction.

In an exemplary embodiment, these instructions take an
specifier from a general register to fetch a large operand from
memory, a second operand from a general register, perform a
group of operations on partitions of bits in the operands, and
catenate the results together, placing the result in a general
register. An exemplary embodiment of the format 1710 of the
Wide Multiply Matrix Floating point instruction is shown in
FIG. 17A.

An exemplary embodiment of the schematics 1730 and
1760 of the Wide Multiply Matrix Floating-point instruction
is shown in FIGS. 17B and 17C. In an exemplary embodi-
ment, the contents of register rc is used as a virtual address,
and a value of specified size is loaded from memory.

The contents of general register rc are used as a wide
operand specifier. This specifier determines the virtual
address, wide operand size and shape for a wide operand.
Using the virtual address and operand size, a value of speci-
fied size is loaded from memory.

A second value is the contents of register rb. The values are
partitioned into groups of operands of the size specified. The
values are partitioned into groups of operands of the size
specified and are multiplied and summed in columns, produc-
ing a group ofresults, each of which is the size specified. The
group of result values is catenated and placed in register rd.

In an exemplary embodiment, the wide-multiply-matrix-
floating-point instructions (W.MUL.MAT.F, W.MUL.
MAT.C.F) perform a partitioned array multiply ofup to 16384
bits, thatis 128x128 bits. The width of the array can be limited
to 128, 64, 32 bits, but not smaller than twice the group size,
by adding one-half the desired size in bytes to the virtual
address operand: 8, 4, or 2. The array can be limited vertically
t0 128, 64,32, or 16 bits, but not smaller than twice the group
size, by adding one-half the desired memory operand size in
bytes to the virtual address operand.

The wide-multiply-matrix-floating-point instructions
(W.MUL.MAT.F, WMUL.MAT.C.F) perform a partitioned
array multiply of a maximum size limited by the extent of the
memory operands, and by the size ofthe data path. The extent,
size and shape parameters of the memory operands are always
specified as powers of two.

Referring to FIG. 17F, the wide operand specifier specifies
a memory operand extent (msize) by adding one-half the
desired memory operand extent in bytes to the specifier. The
wide operand specifier specifies a memory operand shape by

10

15

20

25

30

35

40

45

50

55

60

65

76
adding one-halfthe desired width in bytes to the specifier. The
height of the memory operand (vsize) can be inferred by
dividing the operand extent (msize) by the operand width
(wsize). Valid specifiers for these instructions must specify
wsize bounded by
max(16.gsize*(+n))=wsize=<128, and msize bounded by
2*wsize=msize=(128/gsize*(1+4n))wsize, where n=0 for real
operands (W.MUL.MAT.F) and n=1 for complex operands
(W.MUL.MAT.C.F). Exceeding these bounds raises the
OperandBoundary exception.

In an exemplary embodiment, the virtual address must
either be aligned to 2048/gsize bytes (or 1024/gsize for
W.MUL.MAT.C.F), or must be the sum of an aligned address
and one half ofthe size of the memory operand in bytes and/or
one-half of the size of the result in bytes. An aligned address
must be an exact multiple of the size expressed in bytes. If the
address is not valid an “access disallowed by virtual address”
exception occurs.

The virtual addresses of the wide operands must be
aligned, that is, the byte addresses must be an exact multiple
of'the operand extent expressed in bytes. If the addresses are
not aligned the virtual address cannot be encoded into a valid
specifier. Some invalid specifiers cause an “Operand Bound-
ary” exception.

As shown in FIG. 17B, an exemplary embodiment of a
wide-multiply-matrix-floating-point-half instruction
(W.MUL.MAT.F) multiplies memory [m31 m30 ... m1 mO]
with vector [h g fe d ¢ b a], yielding products [hm31+gm
27+ ... +bm7+am3 ... hm28+gm24+ . .. +bm4+am0].

As shown in FIG. 17C, an exemplary embodiment of a
wide-multiply-matrix-complex-floating-point-half instruc-
tion (W.MUL.MAT.F) multiplies memory [m15 m14 ... ml
mO] with vector [h g fe d ¢ b a], yielding products [hm14+
gml5+ ... +bm2+am3 . . . hm12+gm13+ . .. +bmO+aml-
hm13+4+gm12+ ... -bml+am0].

An exemplary embodiment of the pseudocode 1780 of the
Wide Multiply Matrix Floating-point instruction is shown in
FIG. 17D. Additional pseudocode functions used by this and
other floating point instructions is shown elsewhere in this
specification. An alternative embodiment of the pseudocode
of the Wide Multiply Matrix Floating-point instruction is
shown in FIG. 17G. An exemplary embodiment of the excep-
tions 1790 of the Wide Multiply Matrix Floating-point
instruction is shown in FIG. 17E.

Wide Multiply Matrix Galois

An exemplary embodiment of the Wide Multiply Matrix
Galois instruction is shown in FIGS. 18A-18F. In an exem-
plary embodiment, the Wide Multiply Matrix Galois instruc-
tions perform a matrix multiply in the same form as above,
except that the multiples and additions are performed in
Galois field arithmetic. A size of 8 bits can be specified within
the instruction. The contents of a general register specify the
polynomial with which to perform the Galois field remainder
operation. The nature of the matrix multiplication is novel and
described in detail below.

In an exemplary embodiment, these instructions take an
specifier from a general register to fetch a large operand from
memory, second and third operands from general registers,
perform a group of operations on partitions of bits in the
operands, and catenate the results together, placing the result
in a general register. An exemplary embodiment of the format
1810 ofthe Wide Multiply Matrix Galois instruction is shown
in FIG. 18A.

An exemplary embodiment of the schematic 1830 of the
Wide Multiply Matrix Galois instruction is shown in FIG.

US 9,229,713 B2

77

18B. In an exemplary embodiment, the contents of register re
is used as a virtual address, and a value of specified size is
loaded from memory.

The contents of general register rc are used as a wide
operand specifier. This specifier determines the virtual
address, wide operand size and shape for a wide operand.
Using the virtual address and operand size, a value of speci-
fied size is loaded from memory.

Second and third values are the contents of registers rd and
rb. The values are partitioned into groups of operands of the
size specified. The second values are multiplied as polyno-
mials with the first value, and summed in columns, producing
a group of sums which are reduced to the Galois field speci-
fied by the third value, producing a group of result values. The
group of result values is catenated and placed in register ra.

In an exemplary embodiment, the wide-multiply-matrix-
Galois-bytes instruction (W.MUL.MAT.G.8) performs a par-
titioned array multiply of up to 16384 bits, that is 128x128
bits. The width of the array can be limited to 128, 64,32, or 16
bits, but not smaller than twice the group size of 8 bits, by
adding one-half'the desired size in bytes to the virtual address
operand: 8, 4, 2, or 1. The array can be limited vertically to
128, 64, 32, or 16 bits, but not smaller than twice the group
size of 8 bits, by adding one-half'the desired memory operand
size in bytes to the virtual address operand.

The wide-multiply-matrix-Galois-bytes instructgrion
(W.MUL.MAT.G.8) performs a partitioned array multiply of
a maximum size limited by the extent of the memory oper-
ands, and by the size of the data path. The extent, size and
shape parameters of the memory operands are always speci-
fied as powers of two.

Referring to FIG. 18E, the wide operand specifier specifies
a memory operand extent (msize) by adding one-half the
desired memory operand extent in bytes to the specifier. The
wide operand specifier specifies a memory operand shape by
adding one-halfthe desired width in bytes to the specifier. The
height of the memory operand (vsize) can be inferred by
dividing the operand extent (msize) by the operand width
(wsize). Valid specifiers for these instructions must specity
wsize bounded by 16=wsize<128, and msize bounded by
2*wsize=msize<16*wsize. Exceeding these bounds raises
the OperandBoundary exception.

In an exemplary embodiment, the virtual address must
either be aligned to 256 bytes, or must be the sum of an
aligned address and one-half of the size of the memory oper-
and in bytes and/or one-half of the size of the result in bytes.
An aligned address must be an exact multiple of the size
expressed in bytes. If the address is not valid an “access
disallowed by virtual address™ exception occurs.

The virtual addresses of the wide operands must be
aligned, that is, the byte addresses must be an exact multiple
of'the operand extent expressed in bytes. If the addresses are
not aligned the virtual address cannot be encoded into a valid
specifier. Some invalid specifiers cause an “Operand Bound-
ary” exception.

As shown in FIG. 18B, an exemplary embodiment of a
wide-multiply-matrix-Galois-byte instruction (W.MUL.
MAT.G.8) multiplies memory [m255 m254 . . . m1 mO] with
vector [ponmlkjihgfedchbal, reducing the result modulo

polynomial [ql, yielding products [(pm255+
om247+ +bm31+aml5 mod q) (pm254+
om246+ +bm30+aml4 mod q) . . . (pm248+

om240+ . . . +bm16+am0 mod q)].

An exemplary embodiment of the pseudocode 1860 of the
Wide Multiply Matrix Galois instruction is shown in FIG.
18C. An alternative embodiment of the pseudocode of the
Wide Multiply Matrix Galois instruction is shown in FIG.

10

15

20

25

30

35

40

45

50

55

60

65

78

18F. An exemplary embodiment of the exceptions 1890 ofthe
Wide Multiply Matrix Galois instruction is shown in FIG.
18D.

Memory Operands of Either Little-Endian or Big-Endian
Conventional Byte Ordering

In another aspect of the invention, memory operands of
either little-endian or big-endian conventional byte ordering
are facilitated. Consequently, all Wide operand instructions
are specified in two forms, one for little-endian byte ordering
and one for big-endian byte ordering, as specified by a portion
of the instruction. The byte order specifies to the memory
system the order in which to deliver the bytes within units of
the data path width (128 bits), as well as the order to place
multiple memory words (128 bits) within a larger Wide oper-
and.

Extraction of a High Order Portion of a Multiplier Product
or Sum of Products

Another aspect of the present invention addresses extrac-
tion of a high order portion of a multiplier product or sum of
products, as a way of efficiently utilizing a large multiplier
array. Related U.S. Pat. No. 5,742,840 and U.S. Pat. No.
5,953,241 describe a system and method for enhancing the
utilization of a multiplier array by adding specific classes of
instructions to a general-purpose processor. This addresses
the problem of making the most use of a large multiplier array
that is fully used for high-precision arithmetic—for example
a 64x64 bit multiplier is fully used by a 64-bit by 64-bit
multiply, but only one quarter used for a 32-bit by 32-bit
multiply) for (relative to the multiplier data width and regis-
ters) low-precision arithmetic operations. In particular,
operations that perform a great many low-precision multi-
plies which are combined (added) together in various ways
are specified. One of the overriding considerations in select-
ing the set of operations is a limitation on the size of the result
operand. In an exemplary embodiment, for example, this size
might be limited to on the order of 128 bits, or a single
register, although no specific size limitation need exist.

The size of amultiply result, a product, is generally the sum
of the sizes of the operands, multiplicands and multiplier.
Consequently, multiply instructions specify operations in
which the size of the result is twice the size of identically-
sized input operands. For our prior art design, for example, a
multiply instruction accepted two 64-bit register sources and
produces a single 128-bit register-pair result, using an entire
64x64 multiplier array for 64-bit symbols, or half the multi-
plier array for pairs of 32-bit symbols, or one quarter the
multiplier array for quads of 16-bit symbols. For all of these
cases, note that two register sources of 64 bits are combined,
yielding a 128-bit result.

In several of the operations, including complex multiplies,
convolve, and matrix multiplication, low-precision multiplier
products are added together. The additions further increase
the required precision. The sum of two products requires one
additional bit of precision; adding four products requires two,
adding eight products requires three, adding sixteen products
requires four. In some prior designs, some of this precision is
lost, requiring scaling of the multiplier operands to avoid
overflow, further reducing accuracy of the result.

The use of register pairs creates an undesirable complexity,
in that both the register pair and individual register values
must be bypassed to subsequent instructions. As a result, with
prior art techniques only half of the source operand 128-bit
register values could be employed toward producing a single-
register 128-bit result.

In the present invention, a high-order portion of the multi-
plier product or sum of products is extracted, adjusted by a
dynamic shift amount from a general register or an adjust-

US 9,229,713 B2

79

ment specified as part of the instruction, and rounded by a
control value from a register or instruction portion as round-
to-nearest/even, toward zero, floor, or ceiling. Overflows are
handled by limiting the result to the largest and smallest
values that can be accurately represented in the output result.

Extract Controlled by a Register

In the present invention, when the extract is controlled by a
register, the size of the result can be specified, allowing
rounding and limiting to a smaller number of bits than can fit
in the result. This permits the result to be scaled to be used in
subsequent operations without concern of overflow or round-
ing, enhancing performance.

Also inthe present invention, when the extract is controlled
by a register, a single register value defines the size of the
operands, the shift amount and size of the result, and the
rounding control. By placing all this control information in a
single register, the size of the instruction is reduced over the
number of bits that such a instruction would otherwise
require, improving performance and enhancing flexibility of
the processor.

The particular instructions included in this aspect of the
present invention are Ensemble Convolve Extract, Ensemble
Multiply Extract, Ensemble Multiply Add Extract and
Ensemble Scale Add Extract.

Ensemble Extract Inplace

An exemplary embodiment of the Ensemble Extract
Inplace instruction is shown in FIGS. 19A-19H. In an exem-
plary embodiment, several of these instructions (Ensemble
Convolve Extract, Ensemble Multiply Add Extract) are typi-
cally available only in forms where the extract is specified as
part of the instruction. An alternative embodiment can incor-
porate forms of the operations in which the size of the oper-
and, the shift amount and the rounding can be controlled by
the contents of a general register (as they are in the Ensemble
Multiply Extract instruction). The definition of this kind of
instruction for Ensemble Convolve Extract, and Ensemble
Multiply Add Extract would require four source registers,
which increases complexity by requiring additional general-
register read ports.

In an exemplary embodiment, these operations take oper-
ands from four general registers, perform operations on par-
titions of bits in the operands, and place the concatenated
results in a fourth general register. An exemplary embodiment
of the format and operation codes 1910 of the Ensemble
Extract Inplace instruction is shown in FIG. 19A.

An exemplary embodiment of the schematics 1930, 1945,
1960, and 1975 of the Ensemble Extract Inplace instruction is
shown in FIGS. 19C, 19D, 19E, and 19F. In an exemplary
embodiment, the contents of registers rd, rc, rb, and ra are
fetched. The specified operation is performed on these oper-
ands. The result is placed into register rd.

In an exemplary embodiment, for the E.CON.X instruc-
tion, the contents of general registers rd and rc are catenated,
as ¢||d, and used as a first value. A second value is the contents
of register rb. The values are partitioned into groups of oper-
ands of the size specified and are convolved, producing a
group of values. The group of values is rounded, limited and
extracted as specified, yielding a group of results that is the
size specified. The group of results is catenated and placed in
register rd.

In an exemplary embodiment, for the EMUL.ADD.X
instruction, the contents of general registers rc and rb are
partitioned into groups of operands of the size specified and
are multiplied, producing a group of values to which are
added the partitioned and extended contents of general reg-
ister rd. The group of values is rounded, limited and extracted

10

15

20

25

30

35

40

45

50

55

60

65

80

as specified, yielding a group of results that is the size speci-
fied. The group of results is catenated and placed in register
rd.

As shown in FIG. 19B, in an exemplary embodiment, bits
31... 0 of the contents of register ra specifies several param-
eters that control the manner in which data is extracted, and
for certain operations, the manner in which the operation is
performed. The position of the control fields allows for the
source position to be added to a fixed control value for
dynamic computation, and allows for the lower 16 bits of the
control field to be set for some of the simpler extract cases by
a single GCOPY1.128 instruction. The control fields are fur-
ther arranged so that if only the low order 8 bits are non-zero,
a 128-bit extraction with truncation and no rounding is per-
formed.

Inan exemplary embodiment, the table below describes the
meaning of each label:

label bits meaning

fsize 8 field size

dpos 8 destination position

X 1 extended vs. group size result

s 1 signed vs. unsigned

n 1 complex vs. real multiplication

m 1 mixed-sign vs. same-sign multiplication
1 1 limit: saturation vs. truncation

md 2 rounding

gssp 9 group size and source position

In an exemplary embodiment, the 9-bit gssp field encodes
both the group size, gsize, and source position, spos, accord-
ing to the formula gssp=>512-4*gsize+spos. The group size,
gsize, is a power of two in the range 1 . . . 128. The source
position, spos, is in the range O . . . (2*gsize)-1.

In an exemplary embodiment, the values in the x, s, n, m, 1,
and rnd fields have the following meaning:

values X s n m 1 rnd
0 group unsigned real same-sign truncate F
1 extended signed complex mixed-sign saturate Z
2 N
3 C

These instructions are undefined and cause a reserved
instruction exception if the specified group size is less than 8,
or larger than 64 when complex or extended, or larger than 32
when complex and extended.

Ensemble Multiply Add Extract

The ensemble-multiply-add-extract instructions (E.MU-
L.ADD.X), when the x bit is set, multiply the low-order 64
bits of each of the rc and rb general registers and produce
extended (double-size) results.

As shown in FIG. 19C, an exemplary embodiment of an
ensemble-multiply-add-extract-doublets instruction (E.MU-
LADDX) multiplies vector rc [h g fe d ¢ b a] with vector rb
[ponmlkji],and adding vector rd [x w v utsrq], yielding
the result vector rd [hp+x go+w fu+v em+u dl+t ck+s bj+r
ai+q], rounded and limited as specified by ra31 ... 0.

As shown in FIG. 19D, an exemplary embodiment of an
ensemble-multiply-add-extract-doublets-complex instruc-
tion (E.MUL.X with n set) multiplies operand vectorrc [h g f
e d c b a] by operand vector rb [p o n m 1kj i], yielding the
result vector rd [gp+ho go-hp en+fm em-fn cl+dk ck-dl

US 9,229,713 B2

81

aj+bi ai-bj], rounded and limited as specified by ra31...0.
Note that this instruction prefers an organization of complex
numbers in which the real part is located to the right (lower
precision) of the imaginary part.

Ensemble Convolve Extract

As shown in FIG. 19E, an exemplary embodiment of an
ensemble-convolve-extract-doublets instruction (ECON.X
with n=0) convolves vector rc|rd [x wvutsrqponmlkj
i] with vector rb [h g fe d ¢ b a], yielding the products vector
rd

[ax+bw+cv+du+et+fs+gr+hq . . . as+br+cq+dp+eo+in+
gm+hl
ar+bq+cp+do+en+fm+gl+hk agq+bp+co+dn+em+fl+gk+

hj], rounded and limited as specified by ra;; .

Note that because the contents of general register rd are
overwritten by the result vector, that the input vector rc|jrd is
catenated with the contents of general register rd on the right,
which is a form that is favorable for performing a small
convolution (FIR) filter (only 128 bits of filter coefficients) on
alittle-endian data structure. (The contents of general register
rc can be reused by a second E.CON.X instruction that pro-
duces the next sequential result).

As shown in FIG. 19F, an exemplary embodiment of an
ensemble-convolve-extract-complex-doublets instruction
(ECON.X with n=1) convolves vector rd|frc [x wvutsrqp
onmlkji] with vector b [h g fe d ¢ b a], yielding the
products vector rd

[ax+bw+cv+du+tet+fs+gr+hq . . . as-bt+cq-dr+eo-1p+
gm-hn ar+bq+cp+do+en+fm+gl+hk ag-br+co-dp+em—fn+
gk+hl], rounded and limited as specified by ra31 ... 0.

Note that general register rd is overwritten, which favors a
little-endian data representation as above. Further, the opera-
tion expects that the complex values are paired so that the real
part is located in a less-significant (to the right of) position
and the imaginary part is located in a more-significant (to the
left of) position, which is also consistent with conventional
little-endian data representation.

An exemplary embodiment of the pseudocode 1990 of
Ensemble Extract Inplace instruction is shown in FIG. 19G.
Referring to FIG. 19H, an exemplary embodiment, there are
no exceptions for the Ensemble Extract Inplace instruction.

Ensemble Extract

An exemplary embodiment of the Ensemble Extract
instruction is shown in FIGS. 20A-20L. In an exemplary
embodiment, these operations take operands from three gen-
eral registers, perform operations on partitions of bits in the
operands, and place the catenated results in a fourth register.
An exemplary embodiment of the format and operation codes
2010 of the Ensemble Extract instruction is shown in FIG.
20A.

An exemplary embodiment of the schematics 2020, 2030,
2040, 2050, 2060, 2070, and 2080 of the Ensemble Extract
Inplace instruction is shown in FIGS. 20C, 20D, 20E, 20F,
20G, 20H, and 20I. In an exemplary embodiment, the con-
tents of general registers rd, rc, and rb are fetched. The speci-
fied operation is performed on these operands. The result is
placed into register ra.

As shown in FIG. 20B, in an exemplary embodiment, bits
31... 0 of the contents of general register rb specifies several
parameters that control the manner in which data is extracted,
and for certain operations, the manner in which the operation
is performed. The position of the control fields allows for the
source position to be added to a fixed control value for

10

15

20

25

30

35

40

45

50

55

60

65

82

dynamic computation, and allows for the lower 16 bits of the
control field to be set for some of the simpler extract cases by
a single GCOPY1.128 instruction. The control fields are fur-
ther arranged so that if only the low order 8 bits are non-zero,
a 128-bit extraction with truncation and no rounding is per-
formed.

Inan exemplary embodiment, the table below describes the
meaning of each label:

label bits meaning

fsize 8 field size

dpos 8 destination position

X 1 extended vs. group size result

s 1 signed vs. unsigned

n 1 complex vs. real multiplication

m 1 merge vs. extract or mixed-sign vs. same-sign multiplication
1 1 limit: saturation vs. truncation

md 2 rounding

gssp 9 group size and source position

In an exemplary embodiment, the 9-bit gssp field encodes
both the group size, gsize, and source position, spos, accord-
ing to the formula gssp=512 4*gsize+spos. The group size,
gsize, is a power of two in the range 1 . . . 128. The source
position, spos, is in the range O . . . (2*gsize)-1.

In an exemplary embodiment, the values in the x, s, n, m, 1,
and rnd fields have the following meaning:

values X s n m 1 md
0 group unsigned real extract/same-sign truncate F
1 extended signed complex merge/mixed-sign saturate Z
2 N
3 C

These instructions are undefined and cause a reserved
instruction exception if, for E.SCAL.ADD.X instruction, the
specified group size is less than 8 or larger than 32, or larger
than 16 when complex or for the EMUL.X instruction, the
specified group size is less than 8 or larger than 64 when
complex or extended, or larger than 32 when complex and
extended.

In an exemplary embodiment, for the E.SCAL.ADD.X
instruction, bits 127 . . . 64 of the contents of register rb
specifies the multipliers for the multiplicands in registers rd
and rc. Specifically, bits 64+2%*gsize-1 . . . 64+gsize is the
multiplier for the contents of general register rc, and bits
64+gsize—1 . .. 64 is the multiplier for the contents of general
register rd.

Ensemble Multiply Extract

The ensemble-multiply-extract instructions (E.MUL.X),
when the x bit is set, multiply the low-order 64 bits of each of
the rd and rc general registers and produce extended (double-
size) results.

As shown in FIG. 20C, an exemplary embodiment of an
ensemble-multiply-extract-doublets instruction (E.MULX)
multiplies vector rd [h g fe d ¢ b a] with vectorrc [ponm 1
k j i], yielding the result vector ra [hp go fnh em dl ck bj ai],
rounded and limited as specified by rb;; .

As shown in FIG. 20D, an exemplary embodiment of an
ensemble-multiply-extract-doublets-complex instruction
(E.MUL.X with n set) multiplies vectorrd [h g fedc b a] by
vector rc [p o nm 1k j i], yielding the result vector ra [gp+ho
go-hp en+fm em-tn c1+dk ck-dl aj+bi ai-bj], rounded and

US 9,229,713 B2

83

limited as specified by rb;; . Note that this instruction
prefers an organization of complex numbers in which the real
part is located to the right (lower precision) of the imaginary
part.

Ensemble Scale Add Extract

An aspect of the present invention defines the Ensemble
Scale Add Extract instruction, that combines the extract con-
trol information in a register along with two values that are
used as scalar multipliers to the contents of two vector mul-
tiplicands.

This combination reduces the number of registers that
would otherwise be required, or the number of bits that the
instruction would otherwise require, improving performance.
Another advantage of the present invention is that the com-
bined operation may be performed by an exemplary embodi-
ment with sufficient internal precision on the summation node
that no intermediate rounding or overflow occurs, improving
the accuracy over prior art operation in which more than one
instruction is required to perform this computation.

The ensemble-scale-add-extract instructions (E.SCAL.
ADD.X), when the x bit is set, multiply the low-order 64 bits
of each of the rd and rc general registers by the rb general
register fields and produce extended (double-size) results.

As shown in FIG. 20E, an exemplary embodiment of an
ensemble-scale-add-extract-doublets instruction (E.SCAL.
ADD.X) multiplies vectorrc [hgfedcba] withrbgs g0 [1]
and adds the product to the product of vectorrd [ponm1kj
il withrb,, ¢, [q], yielding the result [hr+pq gr+oq fr+nq
er+mq dr+lq cr+kq br+jq ar+iq], rounded and limited as
specified by rb;, .

As shown in FIG. 20F, an exemplary embodiment of an
ensemble-scale-add-extract-doublets-complex instruction
(E.SCLADD.X with n set) multiplies vectorrc [hgfedcba]
withrb,,; o4 [t 5] and adds the product to the product of
vectorrd [ponmlkji]withrbes 4, [rq], yielding the result
[hs+gt+pgq+ or gs-ht+oq—pr fs+et+nq+mr es-ft+mq-nr
ds+ct+lgq+kr cs—dt+kq-Ir bs+at+jq+ir as—bt+iq—jr], rounded
and limited as specified by rb;; .

Ensemble Extract

As shown in FIG. 20G, in an exemplary embodiment, for
the E.EXTRACT instruction, when m=0 and x=0, the param-
eters specified by the contents of general register rb are inter-
preted to select fields from double size symbols of the cat-
enated contents of general registers rd and rc, extracting
values which are catenated and placed in general register ra.

As shown in FIG. 20H, in an exemplary embodiment, for
an ensemble-merge-extract (E.LEXTRACT when m=1), the
parameters specified by the contents of general register rb are
interpreted to merge fields from symbols of the contents of
general register rc with the contents of general register rd. The
results are catenated and placed in register ra. The x field has
no effect when m=1.

As shown in FIG. 201, in an exemplary embodiment, for an
ensemble-expand-extract (E.EXTRACT when m=0 and
x=1), the parameters specified by the contents of general
register rb are interpreted to extract fields from symbols of the
contents of register rc. The results are catenated and placed in
general register ra. Note that the value of rd is not used.

An exemplary embodiment of the pseudocode 2090 of
Ensemble Extract instruction is shown in FIG. 20J. An alter-
native embodiment of the pseudocode of Ensemble Extract
instruction is shown of FIG. 20L.. Referring to FIG. 20K, in an
exemplary embodiment, there are no exceptions for the
Ensemble Extract instruction.

30

40

45

50

55

84

Reduction of Register Read Ports

Another alternative embodiment can reduce the number of
register read ports required for implementation of instruc-
tions in which the size, shift and rounding of operands is
controlled by a register. The value of the extract control reg-
ister can be fetched using an additional cycle on an initial
execution and retained within or near the functional unit for
subsequent executions, thus reducing the amount ot hardware
required for implementation with a small additional perfor-
mance penalty. The value retained would be marked invalid,
causing a re-fetch of the extract control register, by instruc-
tions that modify the register, or alternatively, the retained
value can be updated by such an operation. A re-fetch of the
extract control register would also be required if a different
register number were specified on a subsequent execution. It
should be clear that the properties of the above two alternative
embodiments can be combined.

Galois Field Arithmetic

Another aspect of the invention includes Galois field arith-
metic, where multiplies are performed by an initial binary
polynomial multiplication (unsigned binary multiplication
with carries suppressed), followed by a polynomial modulo/
remainder operation (unsigned binary division with carries
suppressed). The remainder operation is relatively expensive
in area and delay. In Galois field arithmetic, additions are
performed by binary addition with carries suppressed, or
equivalently, a bitwise exclusive or operation. In this aspect of
the present invention, a matrix multiplication is performed
using Galois field arithmetic, where the multiplies and addi-
tions are Galois field multiples and additions.

Using prior art methods, a 16 byte vector multiplied by a
16x16 byte matrix can be performed as 256 8-bit Galois field
multiplies and 16%*15=240 8-bit Galois field additions.
Included in the 256 Galois field multiplies are 256 polyno-
mial multiplies and 256 polynomial remainder operations.

By use of the present invention, the total computation is
reduced significantly by performing 256 polynomial multi-
plies, 240 16-bit polynomial additions, and 16 polynomial
remainder operations. Note that the cost of the polynomial
additions has been doubled compared with the Galois field
additions, as these are now 16-bit operations rather than 8-bit
operations, but the cost of the polynomial remainder func-
tions has been reduced by a factor of 16. Overall, this is a
favorable tradeoft, as the cost of addition is much lower than
the cost of remainder.

Decoupled Access from Execution Pipelines and Simulta-
neous Multithreading

Inyetanother aspect of the present invention, best shown in
FIG. 4, the present invention employs both decoupled access
from execution pipelines and simultaneous multithreading in
a unique way. Simultaneous Multithreaded pipelines have
been employed in prior art to enhance the utilization of data
path units by allowing instructions to be issued from one of
several execution threads to each functional unit (e.g. Dean
M. Tullsen, Susan J. Eggers, and Henry M. Levy, “Simulta-
neous Multithreading: Maximizing On Chip Parallelism,”
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, Santa Margherita Ligure, Italy, June,
1995).

Decoupled access from execution pipelines have been
employed in prior art to enhance the utilization of execution
data path units by buffering results from an access unit, which
computes addresses to a memory unit that in turn fetches the
requested items from memory, and then presenting them to an
execution unit (e.g. J. E. Smith, “Decoupled Access/Execute
Computer Architectures”, Proceedings of the Ninth Annual

US 9,229,713 B2

85
International Symposium on Computer Architecture, Austin,
Tex. (Apr. 26 29, 1982), pp. 112-119).

Compared to conventional pipelines, the Eggers prior art
used an additional pipeline cycle before instructions could be
issued to functional units, the additional cycle needed to
determine which threads should be permitted to issue instruc-
tions. Consequently, relative to conventional pipelines, the
prior art design had additional delay, including dependent
branch delay.

The present invention contains individual access data path
units, with associated register files, for each execution thread.
These access units produce addresses, which are aggregated
together to a common memory unit, which fetches all the
addresses and places the memory contents in one or more
buffers. Instructions for execution units, which are shared to
varying degrees among the threads are also buffered for later
execution. The execution units then perform operations from
all active threads using functional data path units that are
shared.

For instructions performed by the execution units, the extra
cycle required for prior art simultaneous multithreading
designs is overlapped with the memory data access time from
prior art decoupled access from execution cycles, so that no
additional delay is incurred by the execution functional units
for scheduling resources. For instructions performed by the
access units, by employing individual access units for each
thread the additional cycle for scheduling shared resources is
also eliminated.

This is a favorable tradeoff because, while threads do not
share the access functional units, these units are relatively
small compared to the execution functional units, which are
shared by threads.

With regard to the sharing of execution units, the present
invention employs several different classes of functional units
for the execution unit, with varying cost, utilization, and
performance. In particular, the G units, which perform simple
addition and bitwise operations is relatively inexpensive (in
area and power) compared to the other units, and its utiliza-
tion is relatively high. Consequently, the design employs four
such units, where each unit can be shared between two
threads. The X unit, which performs a broad class of data
switching functions is more expensive and less used, so two
units are provided that are each shared among two threads.
The T unit, which performs the Wide Translate instruction, is
expensive and utilization is low, so the single unit is shared
among all four threads. The E unit, which performs the class
of Ensemble instructions, is very expensive in area and power
compared to the other functional units, but utilization is rela-
tively high, so we provide two such units, each unit shared by
two threads.

In FIG. 4, four copies of an access unit are shown, each
with an access instruction fetch queue A-Queue 401-404,
coupled to an access register file AR 405-408, each of which
is, in turn, coupled to two access functional units A 409-416.
The access units function independently for four simulta-
neous threads of execution. These eight access functional
units A 409-416 produce results for access register files AR
405-408 and addresses to a shared memory system 417. The
memory contents fetched from memory system 417 are com-
bined with execute instructions not performed by the access
unit and entered into the four execute instruction queues
E-Queue 421-424. Instructions and memory data from
E-queue 421-424 are presented to execution register files
425-428, which fetches execution register file source oper-
ands. The instructions are coupled to the execution unit arbi-
tration unit Arbitration 431, that selects which instructions
from the four threads are to be routed to the available execu-

10

15

20

25

30

40

45

50

55

60

65

86

tion units E 441 and 449, X 442 and 448, G 443-444 and
446-447, and T 445. The execution register file source oper-
ands ER 425-428 are coupled to the execution units 441-445
using source operand buses 451-454 and to the execution
units 445-449 using source operand buses 455-458. The func-
tion unit result operands from execution units 441-445 are
coupled to the execution register file using result bus 461 and
the function units result operands from execution units 445-
449 are coupled to the execution register file using result bus
462.

Improved Interprivilege Gateway

In a still further aspect of the present invention, an
improved interprivilege gateway is described which involves
increased parallelism and leads to enhanced performance. In
related U.S. patent application Ser. No. 08/541,416, a system
and method is described for implementing an instruction that,
in a controlled fashion, allows the transfer of control (branch)
from a lower privilege level to a higher privilege level. The
present invention is an improved system and method for a
modified instruction that accomplishes the same purpose but
with specific advantages.

Many processor resources, such as control of the virtual
memory system itself, input and output operations, and sys-
tem control functions are protected from accidental or mali-
cious misuse by enclosing them in a protective, privileged
region. Entry to this region must be established only though
particular entry points, called gateways, to maintain the integ-
rity of these protected regions.

Prior art versions of this operation generally load an
address from a region of memory using a protected virtual
memory attribute that is only set for data regions that contain
valid gateway entry points, then perform a branch to an
address contained in the contents of memory. Basically, three
steps were involved: load, then branch and check. Compared
to other instructions, such as register to register computation
instructions and memory loads and stores, and register based
branches, this is a substantially longer operation, which intro-
duces delays and complexity to a pipelined implementation.

In the present invention, the branch-gateway instruction
performs two operations in parallel: 1) a branch is performed
to the Contents of register 0 and 2) a load is performed using
the contents of register 1, using a specified byte order (little-
endian) and a specified size (64 bits). If the value loaded from
memory does not equal the contents of register 0, the instruc-
tion is aborted due to an exception. In addition, 3) a return
address (the next sequential instruction address following the
branch-gateway instruction) is written into register 0, pro-
vided the instruction is not aborted. This approach essentially
uses a first instruction to establish the requisite permission to
allow user code to access privileged code, and then a second
instruction is permitted to branch directly to the privileged
code because of the permissions issued for the first instruc-
tion.

In the present invention, the new privilege level is also
contained in register 0, and the second parallel operation does
not need to be performed if the new privilege level is not
greater than the old privilege level. When this second opera-
tion is suppressed, the remainder of the instruction performs
an identical function to a branch-link instruction, which is
used for invoking procedures that do not require an increase in
privilege. The advantage that this feature brings is that the
branch-gateway instruction can be used to call a procedure
that may or may not require an increase in privilege.

The memory load operation verifies with the virtual
memory system that the region that is loaded has been tagged
as containing valid gateway data. A further advantage of the
present invention is that the called procedure may rely on the

US 9,229,713 B2

87

fact that register 1 contains the address that the gateway data
was loaded from, and can use the contents of register 1 to
locate additional data or addresses that the procedure may
require. Prior art versions of this instruction required that an
additional address be loaded from the gateway region of
memory in order to initialize that address in a protected man-
ner—the present invention allows the address itself to be
loaded with a “normal” load operation that does not require
special protection.

The present invention allows a “normal” load operation to
also load the contents of register O prior to issuing the branch-
gateway instruction. The value may be loaded from the same
memory address that is loaded by the branch-gateway instruc-
tion, because the present invention contains a virtual memory
system in which the region may be enabled for normal load
operations as well as the special “gateway” load operation
performed by the branch-gateway instruction.

Improved Interprivilege Gateway—System and Privileged
Library Calls

An exemplary embodiment of the System and Privileged
Library Calls is shown in FIGS. 21A-21 B. An exemplary
embodiment of the schematic 2110 of System and Privileged
Library Calls is shown in FIG. 21 A. In an exemplary embodi-
ment, it is an objective to make calls to system facilities and
privileged libraries as similar as possible to normal procedure
calls as described above. Rather than invoke system calls as
an exception, which involves significant latency and compli-
cation, a modified procedure call in which the process privi-
lege level is quietly raised to the required level is used. To
provide this mechanism safely, interaction with the virtual
memory system is required.

In an exemplary embodiment, such a procedure must not
be entered from anywhere other than its legitimate entry
point, to prohibit entering a procedure after the point at which
security checks are performed or with invalid register con-
tents, otherwise the access to a higher privilege level can lead
to a security violation. In addition, the procedure generally
must have access to memory data, for which addresses must
be produced by the privileged code. To facilitate generating
these addresses, the branch-gateway instruction allows the
privileged code procedure to rely on the fact that a single
register has been verified to contain a pointer to a valid
memory region.

In an exemplary embodiment, the branch-gateway instruc-
tion ensures both that the procedure is invoked at a proper
entry point, and that other registers such as the data pointer
and stack pointer can be properly set. To ensure this, the
branch-gateway instruction retrieves a “gateway” directly
from the protected virtual memory space. The gateway con-
tains the virtual address of the entry point of the procedure
and the target privilege level. A gateway can only exist in
regions of the virtual address space designated to contain
them, and can only be used to access privilege levels at or
below the privilege level at which the memory region can be
written to ensure that a gateway cannot be forged.

In an exemplary embodiment, the branch-gateway instruc-
tion ensures that register 1 (dp) contains a valid pointer to the
gateway for this target code address by comparing the con-
tents of register 0 (Ip) against the gateway retrieved from
memory and causing an exception trap if they do not match.
By ensuring that register 1 points to the gateway, auxiliary
information, such as the data pointer and stack pointer can be
set by loading values located by the contents of register 1. For
example, the eight bytes following the gateway may be used
as a pointer to a data region for the procedure.

In an exemplary embodiment, before executing the branch-
gateway instruction, register 1 must be set to point at the

5

10

15

20

25

30

35

40

45

50

55

60

65

88

gateway, and register 0 must be set to the address of the target
code address plus the desired privilege level. A “L.1.64.L.A
r0=r1,0” instruction is one way to set register 0, if register 1
has already been set, but any means of getting the correct
value into register 0 is permissible.

In an exemplary embodiment, similarly, a return from a
system or privileged routine involves a reduction of privilege.
This need not be carefully controlled by architectural facili-
ties, so a procedure may freely branch to a less-privileged
code address. Normally, such a procedure restores the stack
frame, then uses the branch-down instruction to return.

An exemplary embodiment of the typical dynamic-linked,
inter-gateway calling sequence 2130 is shown in FIG. 21B. In
an exemplary embodiment, the calling sequence is identical
to that of the inter-module calling sequence shown above,
except for the use of the B.GATE instruction instead of a
B.LINK instruction. Indeed, if a B.GATE instruction is used
when the privilege level in the Ip register is not higher than the
current privilege level, the B.GATE instruction performs an
identical function to a B.LINK.

In an exemplary embodiment, the callee, if it uses a stack
forlocal variable allocation, cannot necessarily trust the value
of the sp passed to it, as it can be forged. Similarly, any
pointers which the callee provides should not be used directly
unless it they are verified to point to regions which the callee
should be permitted to address. This can be avoided by defin-
ing application programming interfaces (APIs) in which all
values are passed and returned in registers, or by using a
trusted, intermediate privilege wrapper routine to pass and
return parameters. The method described below can also be
used.

In an exemplary embodiment, it can be useful to have
highly privileged code call less-privileged routines. For
example, a user may request that errors in a privileged routine
be reported by invoking a user-supplied error-logging rou-
tine. To invoke the procedure, the privilege can be reduced via
the branch-down instruction. The return from the procedure
actually requires an increase in privilege, which must be
carefully controlled. This is dealt with by placing the proce-
dure call within a lower-privilege procedure wrapper, which
uses the branch-gateway instruction to return to the higher
privilege region after the call through a secure re-entry point.
Special care must be taken to ensure that the less-privileged
routine is not permitted to gain unauthorized access by cor-
ruption of the stack or saved registers, such as by saving all
registers and setting up a new stack frame (or restoring the
original lower-privilege stack) that may be manipulated by
the less-privileged routine. Finally, such a technique is vul-
nerable to an unprivileged routine attempting to use the re-
entry point directly, so it may be appropriate to keep a privi-
leged state variable which controls permission to enter at the
re-entry point.

Improved Interprivilege Gateway—Branch Gateway

An exemplary embodiment of the Branch Gateway instruc-
tion is shown in FIGS. 21C-21H. In an exemplary embodi-
ment, this operation provides a secure means to call a proce-
dure, including those at a higher privilege level. An
exemplary embodiment of the format and operation codes
2160 of the Branch Gateway instruction is shown in FIG.
21C.

An exemplary embodiment of the schematic 2170 of the
Branch Gateway instruction is shown in FIG. 21D. In an
exemplary embodiment, the contents of register rb are a
branch address in the high-order 62 bits and a new privilege
level in the low-order 2 bits. A branch and link occurs to the
branch address, and the privilege level is raised to the new
privilege level. The high-order 62 bits of the successor to the

US 9,229,713 B2

89

current program counter is catenated with the 2-bit current
execution privilege and placed in register O.

In an exemplary embodiment, if the new privilege level is
greater than the current privilege level, an octlet of memory
data is fetched from the address specified by register 1, using
the little-endian byte order and a gateway access type. A
GatewayDisallowed exception occurs if the original contents
of register 0 do not equal the memory data.

In an exemplary embodiment, if the new privilege level is
the same as the current privilege level, no checking of register
1 is performed.

In an exemplary embodiment, an AccessDisallowed
exception occurs if the new privilege level is greater than the
privilege level required to write the memory data, or if the old
privilege level is lower than the privilege required to access
the memory data as a gateway, or if the access is not aligned
on an 8-byte boundary.

In an exemplary embodiment, a Reservedlnstruction
exception occurs if the rc field is not one or the rd field is not
Zero.

In an exemplary embodiment, in the example in FIG. 21D,
a gateway from level O to level 2 is illustrated. The gateway
pointer, located by the contents of general register rc (1), is
fetched from memory and compared against the contents of
general register rb (0). The instruction may only complete if
these values are equal. Concurrently, the contents of general
register rb (0) is placed in the program counter and privilege
level, and the address of the next sequential address and
privilege level is placed into register rd (0). Code at the target
of the gateway locates the data pointer at an offset from the
gateway pointer (register 1), and fetches it into general reg-
ister 1, making a data region available. A stack pointer may be
saved and fetched using the data region; another region
located from the data region, or a data region located as an
offset from the original gateway pointer.

For additional information on the branch-gateway instruc-
tion, see the System and Priviledge Library Calls section
herein.

In an exemplary embodiment, this instruction gives the
target procedure the assurances that general register O con-
tains a valid return address and privilege level, that general
register 1 points to the gateway location, and that the gateway
location is octlet aligned. General register 1 can then be used
to securely reach values in memory. If no sharing of literal
pools is desired, general register 1 may be used as a literal
pool pointer directly. If sharing of literal pools is desired,
register 1 may be used with an appropriate offset to load a new
literal pool pointer; for example, with a one cache line offset
from the register 1. Note that because the virtual memory
system operates with cache line granularity, that several gate-
way locations must be created together.

In an exemplary embodiment, software must ensure that an
attempt to use any octlet within the region designated by
virtual memory as gateway either functions properly or
causes a legitimate exception. For example, if the adjacent
octlets contain pointers to literal pool locations, software
should ensure that these literal pools are not executable, or
that by virtue of being aligned addresses, cannot raise the
execution privilege level. If general register 1 is used directly
as a literal pool location, software must ensure that the literal
pool locations that are accessible as a gateway do not lead to
a security violation.

In an exemplary embodiment, general register 0 contains a
valid return address and privilege level, the value is suitable
for use directly in the Branch down (B.DOWN) instruction to
return to the gateway callee.

10

15

20

25

30

35

40

45

50

55

60

65

90

An exemplary embodiment of the pseudocode 2190 of the
Branch Gateway instruction is shown in FIG. 21E. An alter-
native embodiment of the pseudocode of the Branch Gateway
instruction is shown in FIG. 21G. An exemplary embodiment
of the exceptions 2199 of the Branch Gateway instruction is
shown in FIG. 21F.

Group Add

These operations take operands from two general registers,
perform operations on partitions of bits in the operands, and
place the concatenated results in a third general register.

In accordance with one embodiment of the invention, the
processor handles a variety fix-point, or integer, group opera-
tions. For example, FIG. 26A presents various examples of
Group Add instructions accommodating different operand
sizes, such as a byte (8 bits), doublet (16 bits), quadlet (32
bits), octlet (64 bits), and hexlet (128 bits). FIGS. 26B and
26C illustrate an exemplary embodiment of a format and
operation codes that can be used to perform the various Group
Add instructions shown in FIG. 26 A. As shown in FIGS. 26B
and 26C, in this exemplary embodiment, the contents of
general registers rc and rb are partitioned into groups of
operands of the size specified and added, and if specified,
checked for overtlow or limited, yielding a group of results,
each of which is the size specified. The group of results is
catenated and placed in register rd. While the use of two
operand registers and a different result register is described
here and elsewhere in the present specification, other arrange-
ments, such as the use of immediate values, may also be
implemented. An alternative embodiment of the pseudocode
of'the Group Add instruction is shown in FIG. 26D.

Inthe present embodiment, for example, if the operand size
specified is a byte (8 bits), and each register is 128-bit wide,
then the content of each register may be partitioned into 16
individual operands, and 16 different individual add opera-
tions may take place as the result of a single Group Add
instruction. Other instructions involving groups of operands
may perform group operations in a similar fashion.

An exemplary embodiment of the exceptions of the Group
Add instructions is shown in FIG. 26E.

Group Set and Group Subtract

These operations take two values from general registers,
perform operations on partitions of bits in the operands, and
place the concatenated results in a general register. Two val-
ues are taken from the contents of general registers rc and rb.
The specified operation is performed, and the result is placed
in general register rd.

Similarly, FIG. 27A presents various examples of Group
Set instructions and Group Subtract instructions accommo-
dating different operand sizes. FIGS. 27B and 27C illustrate
an exemplary embodiment of a format and operation codes
that can be used to perform the various Group Set instructions
and Group Subtract instructions. As shown in FIGS. 27B and
27C, in this exemplary embodiment, the contents of registers
rc and rb are partitioned into groups of operands of the size
specified and for Group Set instructions are compared for a
specified arithmetic condition or for Group Subtract instruc-
tions are subtracted, and if specified, checked for overflow or
limited, yielding a group of results, each of which is the size
specified. The group of results is catenated and placed in
register rd. An alternative embodiment of the pseudocode of
the Group Reversed instructions is shown in FIG. 27D. An
exemplary embodiment of the exceptions of the Group
Reversed instructions is shown in FIG. 27E.

Ensemble Convolve, Divide, Multiply, Multiply Sum

These operations take operands from two general registers,
perform operations on partitions of bits in the operands, and
place the concatenated results in a third general register. Two

US 9,229,713 B2

91

values are taken from the contents of general registers rc and
rb. The specified operation is performed, and the result is
placed in general register rd.

In the present embodiment, other fix-point group opera-
tions are also available. FIG. 28A presents various examples
of Ensemble Convolve, Ensemble Divide, Ensemble Multi-
ply, and Ensemble Multiply Sum instructions accommodat-
ing different operand sizes. FIGS. 28B and 28C illustrate an
exemplary embodiment of a format and operation codes that
can be used to perform the various Ensemble Convolve,
Ensemble Divide, Ensemble Multiply and Ensemble Multi-
ply Sum instructions. As shown in FIGS. 28B, 28C, and 28]
in these exemplary and alternative embodiments, the contents
of registers rc and rb are partitioned into groups of operands
of the size specified and convolved or divided or multiplied,
yielding a group of results, or multiplied and summed to a
single result. The group of results is catenated and placed, or
the single result is placed, in register rd. An exemplary
embodiment of the exceptions of the Ensemble Convolve,
Ensemble Divide, Ensemble Multiply, and Ensemble Multi-
ply Sum instructions is shown in FIG. 13K.

An ensemble-multiply (E.MUL) instruction partitions the
low-order 64 bits of the contents of general registers rc and rb
into elements of the specified format and size, multiplies
corresponding elements together and catenates the products,
yielding a 128-bit result that is placed in general register rd.

Referring to FIG. 28D, an ensemble-multiply-doublets
instruction (EMUL.16, EMUL.M16, EMUL.U16, or
E.MUL.P16) multiplies vector [h g f e] with vector [dc b a],
yielding the products [hd gc fb ea]:

Referring to FIG. 28E, an ensemble-multiply-complex
doublets instruction (EMUL.C16) multiplies vector [h g fe]
with vector [d e b al, yielding the products [hc+gd ge-hd
fa+eb ea-fb]:

An ensemble-multiply-sum (E.MUL.SUM) instruction
partitions the 128 bits of the contents of general registers rc
and rb into elements of the specified format and size, multi-
plies corresponding elements together and sums the products,
yielding 128-bit result that is placed in general register rd.

Referring to FIG. 28F, an ensemble-multiply-sum-com-
plex-doublets instruction (EMUL.SUM.16, EMUL.
SUM.M16. or EMUL.SUM.U16) multiplies vector [p o n m
1kji] withvector [hgfedcb a], and summing each product,
yielding the result [hp+go+fn+em+dl+ck+bj+ail:

Referring to FIG. 28G, an ensemble-multiply-sum-com-
plex-doublets instruction (EMUL.SUM.C16) multiplies vec-
tor [ponmlkji] with vector [h gfedcb al, and summing
each product, yielding the result [ho+gp+fm+en+dk+cl+bi+
aj go-hp+em-fn+ck-dl+ai-bj]:

An ensemble-convolve (E.CON) instruction partitions the
contents of general register rc, with the least-significant ele-
ment ignored, and the low-order 64 bits of the contents of
general register rb into elements of the specified format and
size, convolves corresponding elements together and cat-
enates the products, yielding a 128-bit result that is placed in
general register rd.

Referring to FIG. 28H, an ensemble-convolve-doublets
instruction (ECON.16, ECON.M16, or ECON.U16) con-
volves vector [p o nm 1k ji] with vector [d ¢ b a], yielding the
result [ap+bo+cn+dm+ao+bn+cm+dl+an+bm+cl+dk
am-bn+ck-dl]:

Referring to FIG. 281, an ensemble-convolve-complex-
doublets instruction (ECON.C16) convolves vector [ponm
1 k j 1] with vector [d ¢ b a], yielding the products [ap+bo+
cn+dm ao-bp+cm-dn an+bm+cl+dk am-bn+ck-dl]:

An ensemble-divide (E.DIV) instruction divides the low-
order 64 bits of contents of general register rc by the low-

10

15

20

25

30

35

40

45

50

55

60

65

92

order 64 bits of the contents of general register rb. The 64-bit
quotient and 64-bit remainder are catenated, yielding a 128-
bit result that is placed in general register rd.

Ensemble Floating-Point Add, Divide, Multiply, and Sub-
tract

These operations take two values from general registers,
perform a group of floating-point arithmetic operations on
partitions of bits in the operands, and place the catenated
results in a general register.

The contents of general registers rc and rb are combined
using the specified floating-point operation. The result is
placed in general register rd. The operation is rounded using
the specified rounding option or using round-to-nearest if not
specified, if a rounding option is specified, the operation
raises a floating-point exception if a floating-point invalid
operation, divide by zero, overflow, or underflow occurs, or
when specified, if the result is inexact. If a rounding option is
not specified, floating-point exceptions are not raised, and are
handled according to the default rules of IEEE 754.

In accordance with one embodiment of the invention, the
processor also handles a variety floating-point group opera-
tions accommodating different operand sizes. Here, the dif-
ferent operand sizes may represent floating point operands of
different precisions, such as half-precision (16 bits), single-
precision (32 bits), double-precision (64 bits), and quad-pre-
cision (128 bits). FIG. 29 illustrates exemplary functions that
are defined for use within the detailed instruction definitions
in other sections and figures. In the functions set forth in FIG.
29, an internal format represents infinite-precision floating-
point values as a four-element structure consisting of (1) s
(sign bit): 0 for positive, 1 for negative, (2) t (type): NORM,
ZERO, SNAN;, QNAN, INFINITY, (3) e (exponent), and (4)
f: (fraction). The mathematical interpretation of a normal
value places the binary point at the units of the fraction,
adjusted by the exponent: (-1)"*(2"°)*f. The function F con-
verts a packed IEEE floating-point value into internal format.
The function PackF converts an internal format back into
IEEE floating-point format, with rounding and exception
control.

FIGS. 30A and 31 A present various examples of Ensemble
Floating Point Add, Divide, Multiply, and Subtract instruc-
tions. FIGS. 30B-C and 31B-C illustrate an exemplary
embodiment of formats and operation codes that can be used
to perform the various Ensemble Floating Point Add, Divide,
Multiply, and Subtract instructions. In these examples,
Ensemble Floating Point Add, Divide, and Multiply instruc-
tions have been labeled as “EnsembleFloatingPoint.” Also,
Ensemble Floating-Point Subtract instructions have been
labeled as “EnsembleReversedFloatingPoint.”” As shown in
FIGS. 30B-C, 31B-C, and 30D in these exemplary and alter-
native embodiments, the contents of registers rc and rb are
partitioned into groups of operands of the size specified, and
the specified group operation is performed, yielding a group
of results. The group of results is catenated and placed in
register rd.

In the present embodiment, the operation is rounded using
the specified rounding option or using round-to-nearest if not
specified. If a rounding option is specified, the operation
raises a floating-point exception if a floating-point invalid
operation, divide by zero, overflow, or underflow occurs, or
when specified, if the result is inexact. If a rounding option is
not specified, floating-point exceptions are not raised, and are
handled according to the default rules of IEEE 754.

An exemplary embodimemt of the exceptions of the
Ensemble Floating Point instructions is shown in FIG. 30E.

US 9,229,713 B2

93

Ensemble Scale-Add Floating-Point

A novel instruction, Ensemble-Scale-Add improves pro-
cessor performance by performing two sets of parallel mul-
tiplications and pairwise summing the products. This
improves performance for operations in which two vectors
must be scaled by two independent values and then summed,
providing two advantages over nearest prior art operations of
a fused-multiply-add. To perform this operation using prior
art instructions, two instructions would be needed, an
ensemble-multiply for one vector and one scaling value, and
an ensemble-multiply-add for the second vector and second
scaling value, and these operations are clearly dependent. In
contrast, the present invention fuses both the two multiplies
and the addition for each corresponding elements of the vec-
tors into a single operation. The first advantage achieved is
improved performance, as in an exemplary embodiment the
combined operation performs a greater number of multiplies
in a single operation, thus improving utilization of the parti-
tioned multiplier unit. The second advantage achieved is
improved accuracy, as an exemplary embodiment may com-
pute the fused operation with sufficient intermediate preci-
sion so that no intermediate rounding the products is required.

An exemplary embodiment of the Ensemble Scale-Add
Floating-point instruction is shown in FIGS. 22A-22B. In an
exemplary embodiment, these operations take three values
from general registers, perform a group of floating-point
arithmetic operations on partitions of bits in the operands, and
place the concatenated results in a general register. An exem-
plary embodiment of the format 2210 of the Ensemble Scale-
Add Floating-point instruction is shown in FIG. 22A. An
exemplary embodiment of the exceptions of the Ensemble
Scale-Add Floating-point instruction is shown in FIG. 22C.

In an exemplary embodiment, the contents of general reg-
isters rd and rc are taken to represent a group of floating-point
operands. Operands from general register rd are multiplied
with a floating-point operand taken from the least-significant
bits of the contents of general register rb and added to oper-
ands from general register rc multiplied with a floating-point
operand taken from the next least-significant bits of the con-
tents of general register rb: The results are rounded to the
nearest representable floating-point value in a single floating-
point operation. Floating-point exceptions are not raised, and
are handled according to the default rules of IEEE 754. The
results are catenated and placed in general register ra.

An exemplary embodiment of the pseudocode 2230 of the
Ensemble Scale-Add Floating-point instruction is shown in
FIG. 22B. In an exemplary embodiment, there are no excep-
tions for the Ensemble Scale-Add Floating-point instruction.

Performing a Three-Input Bitwise Boolean Operation in a
Single Instruction (Group Boolean)

In a further aspect of the present invention, a system and
method is provided for performing a three-input bitwise
Boolean operation in a single instruction. A novel method is
used to encode the eight possible output states of such an
operation into only seven bits, and decoding these seven bits
back into the eight states.

An exemplary embodiment of the Group Boolean instruc-
tion is shown in FIGS. 23A-23C. In an exemplary embodi-
ment, these operations take operands from three registers,
perform boolean operations on corresponding bits in the
operands, and place the concatenated results in the third reg-
ister. An exemplary embodiment of the format 2310 of the
Group Boolean instruction is shown in FIG. 23A.

An exemplary embodiment of a procedure 2320 of Group
Boolean instruction is shown in FIG. 23B. In an exemplary
embodiment, three values are taken from the contents of
registers rd, rc and rb. The th and il fields specify a function of

20

30

40

45

50

55

94

three bits, producing a single bit result. The specified function
is evaluated for each bit position, and the results are catenated
and placed in register rd. In an exemplary embodiment, reg-
ister rd is both a source and destination of this instruction.

In an exemplary embodiment, the function is specified by
eight bits, which give the result for each possible value of the
three source bits in each bit position:

d 11110000
c 11001100
b 10101010
£(d, c, b) £ i s T fy B £y £y

In an exemplary embodiment, a function can be modified
by rearranging the bits of the immediate value. The table
below shows how rearrangement of immediate value f,
can reorder the operands d, ¢, b for the same function.

operation immediate

f(d, ¢, b) i fs 6 fy
fle,d, b) i L6 £y
f(d, b, ¢) i fefufhfi 61,
f(b, ¢, d) 661 g6 6, f,
fle, b, d) 6 i 6,
(b, d, ¢) 6 f 6 f5 6 £, f,

In an exemplary embodiment, by using such a rearrange-
ment, an operation of the form: b=f{(d,c,b) can be recoded into
a legal form: b=f(b,d,c). For example, the function: b=f(d,c,
b)=d?c:b cannot be coded, but the equivalent function:
d=c?b:d can be determined by rearranging the code for d=f
(d,c,b)=d?c: b, which is 11001010, according to the rule for
f(d,c,b)= f(c,b,d), to the code 11011000.

Encoding

In an exemplary embodiment, some special characteristics
of'this rearrangement is the basis of the manner in which the
eight function specification bits are compressed to seven
immediate bits in this instruction. As seen in the table above,
in the general case, a rearrangement of operands from f(d,c,b)
to f(d,b,c).(interchanging rc and rb) requires interchanging
the values of fg and f5 and the values of f, and f;.

In an exemplary embodiment, among the 256 possible
functions which this instruction can perform, one quarter of
them (64 functions) are unchanged by this rearrangement.
These functions have the property that f=f; and f,=f,. The
values of rc and rb (Note that rc and rb are the register
specifiers, not the register contents) can be freely inter-
changed, and so are sorted into rising or falling order to
indicate the value of f,. (A special case arises when rc=rb, so
the sorting of rc and rb cannot convey information. However,
as only the values t, f,, f;, and {, can ever result in this case,
fs, 15, £,, and £, need not be coded for this case, so no special
handling is required.) These functions are encoded by the
values of £, £, f,, f;, and f,, in the immediate field and £, by
whether rc>rb, thus using 32 immediate values for 64 func-
tions.

In an exemplary embodiment, another quarter of the func-
tions have f,=1 and f;=0. These functions are recoded by
interchanging rc and rb, f; and £, f, and {;. They then share
the same encoding as the quarter of the functions where f,=0
and f;=1, and are encoded by the values of £, f,, £, f,, f}, and
f, in the immediate field, thus using 64 immediate values for
128 functions.

In an exemplary embodiment, the remaining quarter of the
functions have f,=f; and f,=f, . The half of these in which f,=1

US 9,229,713 B2

95

and f,=0 are recoded by interchanging rc and rb, f; and {5, f,
and f,. They then share the same encoding as the eighth of the
functions where f,=0 and f;=1, and are encoded by the values
of £, f,, £, {5, and f;, in the immediate field, thus using 32
immediate values for 64 functions.

In an exemplary embodiment, the function encoding is
summarized by the table:

96

enhances the ability to properly predict both the initial and
final branches of simple loops when a compiler can determine
the number of iterations that the loop will be performed. This
improves performance by avoiding misprediction of the
branch at the end of a loop when the loop terminates and
instruction execution is to continue beyond the loop, as occurs
in prior art branch prediction hardware.

£ f f5 f, f, §H £, f, te>tb ih ils il iy il il, iy rc¢ b
£ £ £ 0 0 f, f f f f, trc tb
£ £, ~£ 0 0 f f f f, f, tb trc
£ 0 1 0 1 f £, f, f, f, trc tb
£ 1 0 0o 1 f, £, £ f, f, tb tw
0 1 1 £ £, £ £ f f, te ub
In an exemplary embodiment, the function decoding is Branch Hint
summarized by the table: An exemplary embodiment of the Branch Hint instruction
2 is shown in FIGS. 24A-24C. In an exemplary embodiment,
this operation indicates a future branch location specified by
il il dbil, ily re>rb £ f &5 £ & © f fo g general register value.
0 0 0 ol il i i, 0 0 il In an exemplary embodiment, this instruction directs the
0 0 1 ily il iy il il 11 il instruction fetch unit of the processor that a branch is likely to
o1 Uy il ily ib iy 0 1l o geeur count times at simm instructions following the current
1 ilz; 0 1 i, il ils il ilg

From the foregoing discussion, it can be appreciated that an
exemplary embodiment of a compiler or assembler producing
the encoded instruction performs the steps above to encode
the instruction, comparing the f6 and {5 values and the {2 and
f1 values of the immediate field to determine which one of
several means of encoding the immediate field is to be
employed, and that the placement of the trb and trc register
specifiers into the encoded instruction depends on the values
of £2 (or f1) and 16 (or 15).

An exemplary embodiment of the pseudocode 2330 of the
Group Boolean instruction is shown in FIG. 23C. It can be
appreciated from the code that an exemplary embodiment of
a circuit that decodes this instruction produces the 2 and f1
values, when the immediate bits ih and il5 are zero, by an
arithmetic comparison of the register specifiers rc and rb,
producing a one (1) value for f2 and f1 when rc>rb. In an
exemplary embodiment, there are no exceptions for the
Group Boolean instruction. An alternative embodiment of the
pseudocode of the Branch Gateway instruction is shown in
FIG. 23D. An exemplary embodiment of the exceptions of the
instruction is shown in FIG. 23E.

Improving the Branch Prediction of Simple Repetitive
Loops of Code

In yet a further aspect to the present invention, a system and
method is described for improving the branch prediction of
simple repetitive loops of code. In such a simple loop, the end
of the loop is indicated by a conditional branch backward to
the beginning of the loop. The condition branch of such a loop
is taken for each iteration of the loop except the final iteration,
when it is not taken. Prior art branch prediction systems have
employed finite state machine operations to attempt to prop-
erly predict a majority of such conditional branches, but with-
out specific information as to the number of times the loop
iterates, will make an error in prediction when the loop ter-
minates.

The system and method of the present invention includes
providing a count field for indicating how many times a
branch is likely to be taken before it is not taken, which

30

40

45

50

55

60

65

successor instruction to the address specified by the contents
of general register rd. An exemplary embodiment of the for-
mat 2410 of the Branch Hint instruction is shown in FIG.
24A.

In an exemplary embodiment, after branching count times,
the instruction fetch unit should presume that the branch at
simm instructions following the current successor instruction
is not likely to occur. If count is zero, this hint directs the
instruction fetch unit that the branch is likely to occur more
than 63 times.

Inan exemplary embodiment, an Access disallowed excep-
tion occurs if the contents of general register rd is not aligned
on a quadlet boundary.

An exemplary embodiment of the pseudocode 2430 of the
Branch Hint instruction is shown in FIG. 24B. An exemplary
embodiment of the exceptions 2460 of the Branch Hint
instruction is shown in FIG. 24C.

Incorporating Floating Point Information into Processor
Instructions

In a still further aspect of the present invention, a technique
is provided for incorporating floating point information into
processor instructions. In related U.S. Pat. No. 5,812,439, a
system and method are described for incorporating control of
rounding and exceptions for floating-point instructions into
the instruction itself. The present invention extends this
invention to include separate instructions in which rounding
is specified, but default handling of exceptions is also speci-
fied, for a particular class of floating-point instructions.

Ensemble Sink Floating-Point

In an exemplary embodiment, a Ensemble Sink Floating-
point instruction, which converts floating-point values to inte-
gral values, is available with control in the instruction that
include all previously specified combinations (default-near
rounding and default exceptions, Z—round-toward-zero and
trap on exceptions, N—round to nearest and trap on excep-
tions, F—floor rounding (toward minus infinity) and trap on
exceptions, C—ceiling rounding (toward plus infinity) and
trap on exceptions, and X—trap on inexact and other excep-
tions), as well as three new combinations (Z.D—round
toward zero and default exception handling, F.D—floor
rounding and default exception handling, and C.D—ceiling
rounding and default exception handling). (The other combi-

US 9,229,713 B2

97

nations: N.D is equivalent to the default, and X.D—trap on
inexact but default handling for other exceptions is possible
but not particularly valuable).

An exemplary embodiment of the Ensemble Sink Floating-
point instruction is shown in FIGS. 25A-25C. In an exem-
plary embodiment, these operations take one value from a
register, perform a group of floating-point arithmetic conver-
sions to integer on partitions of bits in the operands, and place
the concatenated results in a register. An exemplary embodi-
ment of the operation codes, selection, and format 2510 of
Ensemble Sink Floating-point instruction is shown in FIG.
25A.

In an exemplary embodiment, the contents of register rc is
partitioned into floating-point operands of the precision
specified and converted to integer values. The results are
catenated and placed in register rd.

In an exemplary embodiment, the operation is rounded
using the specified rounding option or using round-to-nearest
if not specified. If a rounding option is specified, unless
default exception handling is specified, the operation raises a
floating-point exception if a floating-point invalid operation,
divide by zero, overflow, or underflow occurs, or when speci-
fied, if the result is inexact. If a rounding option is not speci-
fied or if default exception handling is specified, floating-
point exceptions are not raised, and are handled according to
the default rules of IEEE 754.

An exemplary embodiment of the pseudocode 2530 of the
Ensemble Sink Floating-point instruction is shown in FIG.
25B. An exemplary embodiment of the exceptions 2560 of the
Ensemble Sink Floating-point instruction is shown in FIG.
25C.

An exemplary embodiment of the pseudocode 2570 of the
Floating-point instructions is shown in FIG. 25D.

Crossbar Compress, Expand, Rotate, and Shift

These operations take operands from two general registers,
perform operations on partitions of bits in the operands, and
place the concatenated results in a third general register. Two
values are taken from the contents of general registers rc and
rb. The specified operation is performed, and the result is
placed in general register rd.

In one embodiment of the invention, crossbar switch units
such as units 142 and 148 perform data handling operations,
as previously discussed. As shown in FIG. 32A, such data
handling operations may include various examples of Cross-
bar Compress, Crossbar Expand, Crossbar Rotate, and Cross-
bar Shift operations. FIGS. 32B and 32C illustrate an exem-
plary embodiment of a format and operation codes that can be
used to perform the various Crossbar Compress, Crossbar
Rotate, Crossbar Expand, and Crossbar Shift instructions. As
shown in FIGS. 32B and 32C, in this exemplary embodiment,
the contents of register rc are partitioned into groups of oper-
ands of the size specified, and compressed, expanded, rotated
or shifted by an amount specified by a portion of the contents
of register rb, yielding a group of results. The group of results
is catenated and placed in register rd.

Various Group Compress operations may convert groups
of operands from higher precision data to lower precision
data. An arbitrary half-sized sub-field of each bit field can be
selected to appear in the result. For example, FIG. 32D shows
an X.COMPRESS rd=rc,16,4 operation, which performs a
selection of bits 19 . . . 4 of each quadlet in a hexlet. Various
Group Shift operations may allow shifting of groups of oper-
ands by a specified number of bits, in a specified direction,
such as shift right or shift left. As can be seen in FIG. 32C,
certain Group Shift Left instructions may also involve clear-
ing (to zero) empty low order bits associated with the shift, for
each operand. Certain Group Shift Right instructions may

20

25

30

35

40

45

55

98

involve clearing (to zero) empty high order bits associated
with the shift, for each operand. Further, certain Group Shift
Right instructions may involve filling empty high order bits
associated with the shift with copies of the sign bit, for each
operand.

Extract

In one embodiment of the invention, data handling opera-
tions may also include a Crossbar Extract instruction. FIGS.
33A and 33B illustrate an exemplary embodiment of a format
and operation codes that can be used to perform the Crossbar
Extract instruction. As shown in FIGS. 33A and 33B, in this
exemplary embodiment, the contents of general registers rd,
rc, and rb are fetched. The specified operation is performed on
these operands. The result is placed into general register ra.
An alternative embodiment of the pseudocode of the Crossbar
Extract Instruction is shown in FIG. 33F. An exemplary
embodiment of the exceptions of the Crossbar Extract
instruction is shown in FIG. 33G.

The Crossbar Extract instruction allows bits to be extracted
from different operands in various ways. Specifically, bits
31... 0 of the contents of general register rb specifies several
parameters that control the manner in which data is extracted,
and for certain operations, the manner in which the operation
is performed. The position of the control fields allows for the
source position to be added to a fixed control value for
dynamic computation, and allows for the lower 16 bits of the
control field to be set for some of the simpler extract cases by
a single GCOPY1.128 instruction. The control fields are fur-
ther arranged so that if only the low order 8 bits are non-zero,
a 128-bit extraction with truncation and no rounding is per-
formed.

31 24 23
| fsize |

161514131211 109 8 0
|X|s|n|m|l|rnd| gssp |
11111 2 9

dpos
8

The table below describes the meaning of each label:

label bits meaning

fsize 8 field size

dpos 8 destination position

X 1 reserved

s 1 signed vs. unsigned

n 1 reserved

m 1 merge vs. extract

1 1 reserved

rnd 2 reserved

gssp 9 group size and source position

The 9-bit gssp field encodes both the group size, gsize, and
source position, spos, according to the formula gssp=512-
4*gsize+spos. The group size, gsize, is a power of two in the
range 1 . .. 128. The source position, spos, is in the range
0...(2%gsize)-1.

The values inthe s, n, m, 1, and rnd fields have the following
meaning:

values X s n m 1 rnd
0 group unsigned extract
1 extended signed merge
2
3

US 9,229,713 B2

99

As shown in FIG. 33C, for the X. EXTRACT instruction,
when m=0, the Parameters are interpreted to select a fields
from the catenated contents of registers rd and rc, extracting
values which are catenated and placed in register ra. As shown
in FIG. 33D, for a crossbar-merge-extract (X.EXTRACT
when m=1), the parameters are interpreted to merge a fields
from the contents of register rd with the contents of register rc.
The results are catenated and placed in register ra.

As shown in FIG. 33C, for the X. EXTRACT instruction,
when m=0 and x=0, the parameters specified by the contents
of general register rb are interpreted to select a fields from
double-size symbols of the the catenated contents of general
registers rd and rc (as ¢ || d), extracting values which are
catenated and placed in general register ra.

As shown in FIG. 33D, for a crossbar-merge-extract (X.E-
XTRACT when m=1), the parameters specified by the con-
tents of general register rb are interpreted to merge a fields
from symbols of the contents of general register rc with the
contents of general register rd. The results are catenated and
placed in general register ra. The x field has no effect when
m=1.

As shown in FIG. 33E, for an crossbar-expand-extract
(X.EXTRACT when m=0 and x=1), the parameters specified
by the contents of general register rb are interpreted to extract
fields from symbols of the contents of general register rc. The
results are catenated and placed in general register ra. Note
that the value of rd is not used

Shuffle

As shown in FIG. 34A, in one embodiment of the inven-
tion, data handling operations may also include various
Shuffle instructions, which allow the contents of registers to
be partitioned into groups of operands and interleaved in a
variety of ways. FIGS. 34B and 34C illustrate an exemplary
embodiment of a format and operation codes that can be used
to perform the various Shuffle instructions. As shown in
FIGS. 34B and 34C, in this exemplary embodiment, one of
two operations is performed, depending on whether the rc and
rb fields are equal. Also, FIG. 34B and the description below
illustrate the format of and relationship of the rd, rc, rb, op, v,
w, h, and size fields. An alternative embodiment is illustrated
in FIGS. 34F and 34G. An exemplary embodiment of the
exceptions of the Shuffle instructions is shown in FIG. 34H.

In the present embodiment, if the rc and rb fields are equal,
a 128-bit operand is taken from the contents of general reg-
ister rc. Items of size v are divided into w piles and shuftled
together, within groups of size bits, according to the value of
op. The result is placed in general register rd.

Further, if the rc and rb fields are not equal, the contents of
registers rc and rb are catenated into a 256-bit operand as (b ||
¢). Items of size v are divided into w piles and shuffled
together, according to the value of op. Depending on the value
otf'h, a sub-field of op, the low 128 bits (h), or the high 128 bits
(h=1) of the 256-bit shuffled contents are selected as the
result. The result is placed in register rd.

This instruction is undefined and causes a reserved instruc-
tion exception if rc and rb are not equal and the op field is
greater or equal to 56, or if rc and rb are equal and op4 . .. 0
is greater or equal to 28.

As shown in FIG. 34D, an example of a crossbar 4-way
shuftle of bytes within hexlet instruction (X.SHUFFLE.128
rd=rcb,8,4) may divide the 128-bit operand into 16 bytes and
partitions the bytes 4 ways (indicated by varying shade in the
diagram below). The 4 partitions are perfectly shuffled, pro-
ducing a 128-bit result. As shown in FIG. 33E, an example of
a crossbar 4-way shuffle of bytes within triclet instruction
(X.SHUFFLE.256 rd=rc,rb,8,4,0) may catenate the contents
of'rc and rb, then divides the 256-bit content into 32 bytes and

10

15

20

25

30

35

40

45

50

55

60

65

100

partitions the bytes 4 ways (indicated by varying shade in the
diagram below). The low-order halves of the 4 partitions are
perfectly shuffled, producing a 128-bit result.

Referring again to FIG. 34D, an alternative embodiment of
a crossbar 4-way shuffle of bytes with in hexlet instruction
(X.SHUFFLE rd=rcb, 128,8,4) divides the 128-bit operand
into 16 bytes and partitions the bytes 4 ways (indicated by
varying shade in the diagram below). The 4 partitions are
perfectly shuffled, producing a 128-bit result. Referring again
to FIG. 34E, an alternative embodiment of a crossbar 4-way
shuftle of bytes within triclet instruction (X.SHUFFLE.PAIR
rd=rc,rb,8,4,0) catenates the contents of rc and rb, then
divides the 256-bit content into 32 bytes and partitions the
bytes 4 ways (indicated by varying shade in the diagram
below). The low-order halves of the 4 partions are perfectly
shuftled, producing a 128-bit result.

Changing the last immediate value h to 1
(X.SHUFFLE.256 rd=rc,rb,8,4,1) may modify the operation
to perform the same function on the high-order halves of the
4 partitions. Alternatively, changing the last immediate value
hto 1 (X.SHUFFLE.PAIR rd=rc,rb,8,4,1) modifies the opera-
tion to perform the same function on the high-order halves of
the 4 partitions. When rc and rb are equal, the table below
shows the value of the op field and associated values for size,
v, and w.

op size v W op size v W
0 4 1 2 28 64 8 4
1 8 1 2 29 64 1 8
2 8 2 2 30 64 2 8
3 8 1 4 31 64 4 8
4 16 1 2 32 64 1 16
5 16 2 2 33 64 2 16
6 16 4 2 34 64 1 32
7 16 1 4 35 128 1 2
8 16 2 4 36 128 2 2
9 16 1 8 37 128 4 2

10 32 1 2 38 128 8 2

11 32 2 2 39 128 16 2

12 32 4 2 40 128 32 2

13 32 8 2 41 128 1 4

14 32 1 4 42 128 2 4

15 32 2 4 43 128 4 4

16 32 4 4 44 128 8 4

17 32 1 8 45 128 16 4

18 32 2 8 46 128 1 8

19 32 1 16 47 128 2 8

20 64 1 2 48 128 4 8

21 64 2 2 49 128 8 8

22 64 4 2 50 128 1 16

23 64 8 2 51 128 2 16

24 64 16 2 52 128 4 16

25 64 1 4 53 128 1 32

26 64 2 4 54 128 2 32

27 64 4 4 55 128 1 64

When rc and rb are not equal, the table below shows the
value oftheop, , field and associated values for size, v, and
w: Ops is the value ofh, which controls whether the low-order
or high-order half of each partition is shuffled into the result.

ops.. o size v W
0 256 1 2
1 256 2 2
2 256 4 2
3 256 8 2
4 256 16 2
5 256 32 2
6 256 64 2

US 9,229,713 B2

101
-continued
ops.. o size v W

7 256 1 4

8 256 2 4

9 256 4 4
10 256 8 4
11 256 16 4
12 256 32 4
13 256 1 8
14 256 2 8
15 256 4 8
16 256 8 8
17 256 16 8
18 256 1 16
19 256 2 16
20 256 4 16
21 256 8 16
22 256 1 32
23 256 2 32
24 256 4 32
25 256 1 64
26 256 2 64
27 256 1 128

Wide Solve Galois

An exemplary embodiment of the Wide Solve Galois
instruction is shown in FIGS. 35A-35B. FIG. 35A illustrates
the present invention with a method and apparatus for solving
equations iteratively. The particular operation described is a
wide solver for the class of Galois polynomial congruence
equations L*S=W (mod z**2T), where S, L, and W are poly-
nomials in a galois field such as GF(256) of degree 27T, T+1,
and T respectively. Solution of this problem is a central com-
putational step in certain error correction codes, such as
Reed-Solomon codes, that optimally correct up to T errors in
ablock of symbols in order to render a digital communication
or storage medium more reliable. Further details of the math-
ematics underpinning this implementation may be obtained
from (Sarwate, Dilip V. and Shanbhag, Naresh R. “High-
Speed Architectures for Reed-Solomon Decoders”, revised
Jun. 7, 2000, Submitted to IEEE Trans. VLSI Systems, acces-
sible from http://icims.csl.uiuc.edu/~shanbhag/vips/publica-
tions/bma.pdf and hereby incorporated by reference in its
entirety.)

The apparatus in FIG. 35A contains memory strips, Galois
multipliers, Galois adders, mums, and control circuits that are
already contained in the exemplary embodiments referred to
in the present invention. As can be appreciated from the
description of the Wide Matrix Multiply Galois instruction,
the polynomial remainder step traditionally associated with
the Galois multiply can be moved to after the Galois add by
replacing the remainder then add steps with a polynomial add
then remainder step.

This apparatus both reads and writes the embedded
memory strips for multiple successive iterations steps, as
specified by the iteration control block on the left. Each
memory strip is initially loaded with polynomial S, and when
2T iterations are complete (in the example shown, T=4), the
upper memory strip contains the desired solution polynomi-
als L and W. The code block in FIG. 35B describes details of
the operation of the apparatus of FIG. 35A, using a C lan-
guage notation.

Similar code and apparatus can be developed for scalar
multiply-add iterative equation solvers in other mathematical
domains, such as integers and floating point numbers of vari-
ous sizes, and for matrix operands of particular properties,
such as positive definite matrices, or symetrix matrices, or
upper or lower triangular matrices.

10

15

20

25

30

35

40

45

50

55

60

65

102

Wide Transform Slice

An exemplary embodiment of the Wide Transform Slice
instruction is shown in FIGS. 36 A-36B. FIG. 36A illustrates
a method and apparatus for extremely fast computation of
transforms, such as the Fourier Transform, which is needed
for frequency-domain communications, image analysis, etc.
In this apparatus, a 4x4 array of 16 complex multipliers is
shown, each adjacent to a first wide operand cache. A second
wide operand cache or embedded coefficient memory array
supplies operands that are multiplied by the multipliers with
the data access from the wide embedded cache. The resulting
products are supplied to strips of atomic transforms—in this
preferred embodiment, radix-4 or radix-2 butterfly units.
These units receive the products from a row or column of
multipliers, and deposit results with specified stride and digit
reversal back into the first wide operand cache.

A general register ra contains both the address of the first
wide operand as well as size and shape specifiers, and a
second general register rb contains both the address of the
second wide operand as well as size and shape specifiers.

An additional general register rc specifies further param-
eters, such as precision, result extraction parameters (as in the
various Extract instructions described in the present inven-
tion).

In an alternative embodiment, the second memory operand
may be located together with the first memory operand in an
enlarged memory, using distinctive memory addressing to
obtain either the first or second memory operand.

In an alternative embodiment, the results are deposited into
athird wide operand cache memory. This third memory oper-
and may be combined with the first memory operand, again
using distinctive memory addressing. By relabeling of wide
operand cache tags, the third memory may alternate storage
locations with the first memory. Thus upon completion of the
Wide Transform Slice instruction, the wide operand cache
tags are relabeled to that the result appears in the location
specified for the first memory operand. This alternation
allows for the specification of not-in-place transform steps
and permits the operation to be aborted and subsequently
restarted if required as the result of interruption of the flow of
execution.

The code block in FIG. 36B describes the details of the
operation of the apparatus of FIG. 36A, using a C language
notation. Similar code and apparatus can be developed for
other transforms and other mathematical domains, such as
polynomial, Galois field, and integer and floating point real
and complex numbers of various sizes.

In an exemplary embodiment, the Wide Transform Slice
instruction also computes the location of the most significant
bit of all result elements, returning that value as a scalar result
of' the instruction to be placed in a general register rc. This is
the same operand in which extraction control and other infor-
mation is placed, but in an alternative embodiment, it could be
a distinct register. Notably, this location of the most signifi-
cant bit may be computed in the exemplary embodiment by a
series of Boolean operations on parallel subsets of the result
elements yielding vector Boolean results, and at the conclu-
sion of the operation, by reduction of the vector of Boolean
results to a scalar Boolean value, followed by a determination
of the most significant bit of the scalar Boolean value.

By adding the values representing the extraction control
and other information to this location of the most significant
bit, an appropriate scaling parameter is obtained, for use in the
subsequent stage of the Wide Transform Slice instruction. By
accumulating the most significant bit information, an overall
scaling value for the entire transform can be obtained, and the
transformed results are maintained with additional precision
over that of fixed scaling schemes in prior art.

US 9,229,713 B2

103

Wide Convolve Extract

These instructions take two specifiers from general regis-
ters to fetch two large operands from memory, a third con-
trolling operand from a general register, multiply, sum and
extract partitions of bits in the operands, and catenate the
results together, placing the result in a general register.

An exemplary embodiment of the Wide Convolve Extract
instruction is shown in FIGS. 37A-37K. An alternative
embodiment is shown in FIG. 37L. An exemplary embodi-
ment of the exceptions of the Wide Convolve Extract instruc-
tion is shown in FIG. 37M. A similar method and apparatus
can be applied to either digital filtering by methods of 1-D or
2-D convolution, or motion estimation by the method of 1-D
or 2-D correlation. The same operation may be used for
correlation, as correlation can be computed by reversing the
order ofthe 1-B or 2-D pattern and performing a convolution.
Thus, the convolution instruction described herein may be
used for correlation, or a Wide Correlate Extract instruction
can be constructed that is similar to the convolution instruc-
tion herein described except that the order of the coefficient
operand block is 1-B or 2-D reversed.

Digital filter coefficients or a estimation template block is
stored in one wide operand memory, and the image data is
stored in a second wide operand memory. A single row or
column of image data can be shifted into the image array, with
a corresponding shift of the relationship of the image data
locations to the template block and multipliers. By this
method of partially updating and moving the data in the
second embedded memory, The correlation of template
against image can be computed with greatly enhanced effec-
tive bandwidth to the multiplier array. Note that in the present
embodiment, rather than shifting the array, circular address-
ing is employed, and a shift amount or start location is speci-
fied as a parameter of the instruction.

FIGS. 37A and 37B illustrate an exemplary embodiment of
a format and operation codes that can be used to perform the
Wide Convolve Extract instruction. As shown in FIGS. 37A
and 37B, in this exemplary embodiment, the contents of
general registers rc and rd are used as wide operand specifiers.
These specifiers determine the virtual address, wide operand
size and shape for wide operands. Using the virtual addresses
and operand sizes, first and second values of specified size are
loaded from memory. The group size and other parameters
are specified from the contents of general register rb. The
values are partitioned into groups of operands of the size and
shape specified and are convolved, producing a group of
values. The group of values is rounded, and limited as speci-
fied, yielding a group of results which is the size specified.
The group of results is catenated and placed in general regis-
ter ra.

The size of partitioned operands (group size) for this opera-
tion is determined from the contents of general register rb. We
alsouse low order bits of rc and rd to designate a wide operand
size and shape, which must be consistent with the group size.
Because the memory operand is cached, the group size and
other parameters can also be cached, thus eliminating decode
time in critical paths from rb, rc or rd.

The wide-convolve-extract instructions (W.CON-
VOLVE.X.B, W.CONVOLVE.X.L) perform a partitioned
array multiply of a maximum size limited only by the extent
of the memory operands, not the size of the data path. The
extent, size and shape parameters of the memory operands are
always specified as powers of two; additional parameters may
further limit the extent of valid operands within a power-of-
two region.

In an exemplary embodiment, as illustrated in FIG. 37C,
each of the wide operand specifiers specifies a memory oper-

25

40

45

50

65

104

and extent by adding one-half the desired memory operand
extent in bytes to the specifiers. Each of the wide operand
specifiers specifies a memory operand shape by adding one-
fourth the desired width in bytes to the specifiers. The heights
of each of the memory operands can be inferred by dividing
the operand extent by the operand width. One-dimensional
vectors are represented as matrices with a height of one and
with width equal to extent. In an alternative embodiment,
some of the specifications herein may be included as part of
the instruction.

In an exemplary embodiment, the Wide Convolve Extract
instruction allows bits to be extracted from the group of
values computed in various ways. For example, bits 31 ... 0
of'the contents of general register rb specifies several param-
eters which control the manner in which data is extracted. The
position and default values of the control fields allows for the
source position to be added to a fixed control value for
dynamic computation, and allows for the lower 16 bits of the
control field to be set for some of the simpler cases by a single
GCOPYT instruction. In an alternative embodiment, some of
the specifications herein may be included as part of the
instruction.

31 2423 16 1514 131211109 8 0
| fsize | dpos |X|s|n|m| 1 |rnd| gssp
8 8 11111 2 9

The table below describes the meaning of each label:

label bits meaning

fsize 8 field size

dpos 8 destination position

X 1 extended vs. group size result

s 1 signed vs. unsigned

n 1 complex vs. real multiplication

m 1 mixed-sign vs. same-sign multiplication
1 1 saturation vs. truncation

md 2 rounding

gssp 9 group size and source position

The 9-bit gssp field encodes both the group size, gsize, and
source position, spos, according to the formula gssp=512-
4*gsize+spos. The group size, gsize, is a power of two in the
range 1 . .. 128. The source position, spos, is in the range
0...(2%gsize)-1.

The values in the x, s, n, m, 1, and rnd fields have the
following meaning:

values X s n m 1 md
0 group unsigned real same-sign truncate F
1 extended signed complex mixed-sign saturate Z
2 N
3 C

Bits 95. .. 32 ofthe contents of general register rb specifies
several parameters which control the selection of partitions of
the memory operands. The position and default values of the
control fields allows the multiplier zero length field to default
to zero and the multiplicand origin position field computation
to wrap around without overflowing into any other field by
using 32-bit arithmetic

US 9,229,713 B2

105

95 64 63 32

mzero |
32 32

mpos

The table below describes the meaning of each label:

label bits meaning
mpos 32 multiplicand origin position
mzero 32 multiplier zero length

The 32-bit mpos field encodes both the horizontal and
vertical location of the multiplicand origin, which is the loca-
tion of the multiplicand element at which the zero-th element
of the multiplier combines to produce the zero-th element of
the result. Varying values in this field permit several results to
be computed with no changes to the two wide operands. The
mpos field is a byte offset from the beginning of the multipli-
cand operand.

The 32-bit mzero field encodes a portion of the multiplier
operand that has a zero value and which may be omitted from
the multiply and sum computation. Implementations may use
a non-zero value in this field to reduce the time and/or power
to perform the instruction, or may ignore the contents of this
field. The implementation may presume a zero value for the
multiplier operand in bits dmsize-1 . . . dmsize—(mzero*8),
and skip the multiplication of any multiplier obtained from
this bit range. The mzero field is a byte offset from the end of
the multiplier operand.

The virtual addresses of the wide operands must be
aligned, that is, the byte addresses must be an exact multiple
of'the operand extent expressed in bytes. If the addresses are
not aligned the virtual address cannot be encoded into a valid
specifier. Some invalid specifiers cause an “Operand Bound-
ary” exception.

Z (zero) rounding is not defined for unsigned extract opera-
tions, so F (floor) rounding is substituted, which will properly
round unsigned results downward.

An implementation may limit the extent of operands due to
limits on the operand memory or cache, or of the number of
values that may be accurately summed, and thereby cause a
Reservedlnstruction exception.

As shown in FIGS. 37D and 37E, as an example with
specific register values, a wide-convolve-extract-doublets
instruction (W.CONVOLVE.X.B or WCONVOLVE.X.L),
with start in rb=24, convolves memory vector rc [¢31¢30. ..
c1 cO] withmemory vectorrd [d15d14 ... d1 d0], yielding the
products [c16d15+c17d14+ . . . +c30d1+c31d0 c15d15+
cl16d14+ . .. +¢29d1+c30d0 c10d15+c11d14+ . . . +c24d1+
¢25d0 ¢9d15+¢10d14+ . . . +c23d1+4¢24d0], rounded and
limited as specified by the contents of general register rb. The
values ¢8 . . . c0 are not used in the computation and may be
any value.

As shown in FIGS. 37F and 37G, as an example with
specific register values, a wide-convolve-extract-doublets
instruction (W.CONVOLVE.X.L)), with mpos in rb=8 and
mzero in rb=48 (so length=(512-mzero)*dmsize/512=13),
convolves memory vector rc [c31 ¢30. . . c1 cO] with memory
vector rd [d15 d14 . .. d1 dO], yielding the products [c3d12+
c4dll+ . . . +cl4dl+c15d0 c2d12+c3d11+ . . . +cl3dl+
c14d0 . . . ¢29d12+c30d11+ . . . +c8d1+c9d0 c28d12+
c29d11+. .. +c7d1+c8d0], rounded and limited as specified.
In this case, the starting position is located so that the useful
range of values wraps around below c0, to ¢31 . . . 28. The

10

20

25

30

40

45

55

106

values ¢27 . . . ¢16 are not used in the computation and may be
any value. The length parameter is set to 13, so values of
di15 ... d13 must be zero.

Inthis case, the starting position is located so that the useful
range of values wraps around below c0, to c31 . .. 25. The
length parameter is set to 13, so values of d15 . .. d13 are
expected to be zero.

As shown in FIGS. 37H and 371, as an example with
specific register values, a wide-convolve-extract-doublets-
two-dimensional instruction (W.CONVOLVEX.B or
W.CONVOLVE.X.L)), with mpos in rb=24 and vsize in rc and
rd=4, convolves memory vector rc [c127 c126 . . . ¢31
c30 . . . cl c0] with memory vector rd [d63 d62 . . . d15
di4 . . . dO dO], yielding the products [c113d63+
cl12d62+ . . . +cl6d15+c17d14+ . . . +c30d1+¢31d0
c112d63+¢111d62+ . . . +c15d15+c16d14+ . . . +c29d1+
c30d0 . . . cl07d63+c106d62+ . . . +cl0d15+
clldl4+...+c24d14c25d0¢c106d63+¢105d62+ ... +¢9d15+
c10d14+ . . . +c23d1+c24d0], rounded and limited as speci-
fied by the contents of general register rb.

As shown in FIGS. 37] and 37K, as an example with
specific register values, a wide-convolve-extract-complex-
doublets instruction (W.CONVOLVE.X.B or W.CON-
VOLVE.X.L with n set in rb), with mpos in rb=12, convolves
memory vector rc [c15c¢14 . .. ¢l c0] with memory vector rd
[d7 do6 dl d0], yielding the products [c8d7+
c9d6+ . . . +c16d1+¢15d0 ¢7d7+c8d6+ . . . +c13d1+¢14d0
c6d7+c7d6+ . . . +¢12d1+c13d0 c5d7+c6d6+ . . . +cl1dl+
¢12d0], rounded and limited as specified by the contents of
general register rb.

Wide Convolve Floating-Point

A Wide Convolve Floating-point instruction operates simi-
larly to the Wide Convolve Extract instruction described
above, except that the multiplications and additions of the
operands proceed using floating-point arithmetic. The repre-
sentation of the multiplication products and intermediate
sums in an exemplary embodiment are performed without
rounding with essentially unbounded precision, with the final
results subject to a single rounding to the precision of the
result operand. In an alternative embodiment, the products
and sums are computed with extended, but limited precision.
In another alternative embodiment, the products and sums are
computed with precision limited to the size of the operands.

The Wide Convolve Floating-point instruction in an exem-
plary embodiment may use the same format for the general
register rb fields as the Wide Convolve Extract instruction,
except for sfields which are not applicable to floating-point
arithmetic. For example, the fsize, dpos, s, m, and 1 fields and
the spos parameter of the gssp field may be ignored for this
instruction. In an alternative embodiment, some of the
remaining information may be specified within the instruc-
tion, such as the gsize parameter or the n parameter, or may be
fixed to specified values, such as the rounding parameter may
be fixed to round-to-nearest. In an alternative embodiment,
the remaining fields may be rearranged, for example, if all but
the mpos field are contained within the instruction orignored,
the mpos field alone may be contained in the least significant
portion of the general register rb contents.

Wide Decode

Another category of enhanced wide operations is useful for
error correction by means of Viterbi or turbo decoding. In this
case, embedded memory strips are employed to contain state
metrics and pre-traceback decision digits. An array of Add-
Compare-Swap or log-MAP units receive a small number of
branch metrics, such as 128 bits from an external register in
our preferred embodiment. The array then reads, recomputes,
and updates the state metric memory entries which for many
practical codes are very much larger. A number of decision

US 9,229,713 B2

107

digits, typically 4-bits each with a radix-16 pre-traceback
method, is accumulated in a the second traceback memory.
The array computations and state metric updates are per-
formed iteratively for a specified number of cycles. A second
iterative operation then traverses the traceback memory to
resolve the most likely path through the state trellis.

Wide Boolean

Another category of enhanced wide operations are Wide
Boolean operations that involve an array of small look up
tables (LUTs), typically with 8 or 16 entries each specified by
3 or 4 bits of input address, interconnected with nearby mul-
tiplexors and latches. The control of the LUT entries, multi-
plexor selects, and latch clock enables is specified by an
embedded wide cache memory. This structure provides a
mean to provide a strip of field programmable gate array that
can perform iterative operations on operands provided from
the registers of a general purpose microprocessor. These
operations can iterate over multiple cycles, performing ran-
domly specifiable logical operations that update both the
internal latches and the memory strip itself.

Transfers Between Wide Operand Memories

The method and apparatus described here are widely appli-
cable to the problem of increasing the effective bandwidth of
microprocessor functional units to approximate what is
achieved in application-specific integrated circuits (ASICs).
When two or more functional units capable of handling wide
operands are present at the same time, the problem arises of
transferring data from one functional unit that is producing it
into an embedded memory, and through or around the
memory system, to a second functional unit also capable of
handling wide operands that needs to consume that data after
loading it into its wide operand memory. Explicitly copying
the data from one memory location to another would accom-
plish such a transfer, but the overhead involved would reduce
the effectiveness of the overall processor.

FIG. 38 describes a method and apparatus for solving this
problem of transfer between two or more units with reduced
overhead. The embedded memory arrays function as caches
that retain local copies of data which is conceptually present
in a single global memory space. A cache coherency control-
ler monitors the address streams of cache activities, and
employs one of the coherency protocols, such as MOESI or
MES], to maintain consistency up to a specified standard. By
proper initialization of the cache coherency controller, soft-
ware running on the general purpose microprocessor can
enable the transfer of data between wide units to occur in
background, overlapped with computation in the wide units,
reducing the overhead of explicit loads and stores.

Always Reserved

This operation generates a reserved instruction exception.

The reserved instruction exception is raised. Software may
depend upon this major operation code raising the reserved
instruction exception in all implementations. The choice of
operation code intentionally ensures that a branch to a zeroed
memory area will raise an exception.

An exemplary embodiment of the Always Reserved
instruction is shown in FIGS. 41A-41C.

Address

These operations perform address-sized scalar calcula-
tions with two general register values placing the result in a
general register. If specified as an option, an overflow raises a
fixed-point arithmetic exception.

The contents of general registers rc and rb are fetched and
the specified operation is performed on these operands. The
result is placed into general register rd.

20

25

40

45

50

60

108

If specified, the operation is checked for signed or unsigned
overflow. If overflow occurs, a FixedPointArithmetic excep-
tion is raised.

An exemplary embodiment of the Address instruction is
shown in FIGS. 42A-42C.

Address Compare

These operations perform a scalar fixed-point arithmetic
comparison between two general register values and raise a
fixed-point arithmetic exception if the condition specified is
met.

The contents of general registers rd and rc are fetched and
the specified scalar arithmetic comparison is performed on
these operands. Ifthe specified condition is true, a fixed-point
arithmetic exception is raised. This instruction generates no
general register results.

An exemplary embodiment of the Address Compare
instruction is shown in FIGS. 43A-43C.

Address Compare Floating-point

These operations perform a scalar floating-point arithmetic
comparison between two general register values and raise a
floating-point arithmetic exception if the condition specified
is met.

The contents of general registers rd and rc are arithmeti-
cally compared as scalar values at the specified floating-point
precision. If the specified condition is true, a floating-point
arithmetic exception is raised. This instruction generates no
general register results. Floating-point exceptions due to sig-
naling or quiet NaNs, comprising an IEEE-754 invalid opera-
tion, are not raised, but are handled according to the default
rules of IEEE 754.

Quad-precision floating-point values may be compared
using similarly-named G.COM instructions.

An exemplary embodiment of the Address Compare Float-
ing-point instruction is shown in FIGS. 44A-44C.

Address Copy Immediate

This operation produces one immediate value, placing
result in a general register.

An immediate value is sign-extended from the 18-bit imm
field. The result is placed into general register rd.

An exemplary embodiment of the Address Copy immedi-
ate instruction is shown in FIGS. 45A-45C.

Address immediate

These operations perform address-sized scalar calcula-
tions with one general register value and one immediate
value, placing the result in a general register. If specified as an
option, an overflow raises a fixed-point arithmetic exception.

An exemplary embodiment of the Address Immediate
instruction is shown in FIGS. 46A-46C.

Address Immediate Reversed

These operations perform a subtraction with one general
register value and one immediate value, placing the result in
a general register. If specified as an option, an overflow raises
a fixed-point arithmetic exception.

The contents of general register rc is fetched, and a 64-bit
immediate value is sign-extended from the 12-bit imm field.
The specified subtraction operation is performed on these
operands. The result is placed into general register rd.

If specified, the operation is checked for signed or unsigned
overflow, If overflow occurs, a FixedPointArithmetic excep-
tion is raised.

An exemplary embodiment of the Address Immediate
Reversed instruction is shown in FIGS. 47A-47C.

Address Immediate Set

These operations perform a scalar fixed-point arithmetic
comparison between one general register value and one
immediate value, placing the result in a general register.

US 9,229,713 B2

109

The contents of general register rc is fetched, and a 128-bit
immediate value is sign-extended from the 12-bit imm field.
The specified scalar arithmetic comparison is performed on
these operands. The result is placed into general register rd.

An exemplary embodiment of the Address Immediate Set
instruction is shown in FIGS. 48A-48C.

Address Reversed

These operations perform address-sized scalar subtraction
with two general register values, placing the result in a gen-
eral register. If specified as an option, an overtlow raises a
fixed-point arithmetic exception.

The contents of general registers rc and rb are fetched and
the specified subtraction operation is performed on these
operands. The result is placed into general register rd.

It specified, the operation is checked for signed or unsigned
overflow. If overflow occurs, a FixedPointArithmetic excep-
tion is raised.

An exemplary embodiment of the Address Reversed
instruction is shown in FIGS. 49A-49C.

Address Set

These operations perform a scalar fixed-point arithmetic
comparison between two general register values, placing the
result in a general register.

The contents of general registers rc and rb are fetched and
the specified arithmetic comparison is performed on these
operands. The result is placed into general register rd.

An exemplary embodiment of the Address Set instruction
is shown in FIGS. 50A-50C.

Address Set Floating-point

These operations perform a scalar floating-point arithmetic
comparison of two general register values, and placing the
result in a general register.

The contents of general registers rb and rc are arithmeti-
cally compared using the specified floating-point operation.
The result is placed in general register rd. Floating-point
exceptions due to sigNaling or quiet NaNs, comprising an
IEEE-754 invalid operation, are not raised, but are handled
according to the default rules of IEEE 754.

An exemplary embodiment of the Address Set Floating-
point instruction is shown in FIGS. 51A-51C.

Address Shift Left Immediate Add

These operations shift left one scalar address-sized general
register value by a small immediate value and add a second
scalar address-sized general register value, placing the result
in a general register.

The contents of general register rb are shifted left by the
immediate amount and added to the contents of general reg-
ister rc. The result is placed into general register rd.

An exemplary embodiment of the Address Shift Left
Immediate Add instruction is shown in FIGS. 52A-52C.

Address Shift Left Inmediate Subtract

These operations shift left one scalar address-sized general
register value by a small amount and subtract a second scalar
address-sized general register value, placing the result in a
general register.

The contents of general register rc is subtracted from the
contents of general register rb shifted left by the immediate
amount. The result is placed into general register rd.

An exemplary embodiment of the Address Shift Left
Immediate Subtract instruction is shown in FIGS. 53A-53C.

Address Shift Inmediate

These operations shift left or right one scalar address-sized
general register value by an immediate value, placing the
result in a general register. If specified as an option, an over-
flow raises a fixed-point arithmetic exception.

The contents of general register rc is fetched, and a 6-bit
immediate value is taken from the 6-bit simm field. The

10

15

20

25

30

35

40

45

50

55

60

65

110

specified operation is performed on these operands. The
result is placed into general register rd.

If specified, the operation is checked for signed or unsigned
overflow. If overflow occurs, a FixedPointArithmetic excep-
tion is raised.

An exemplary embodiment of the Address Shift Immediate
instruction is shown in FIGS. 54A-54C.

Address Ternary

This operation uses the bits of scalar address-sized general
register value to select bits from two other general register
values, placing the result in a fourth general register.

The contents of general registers rd, rc, and rb are fetched.
For each bit, the contents of general register rd selects either
the contents of general register rc or the contents of general
register rb, The result is placed into general register ra.

An exemplary embodiment of the Address Ternary instruc-
tion is shown in FIGS. 55A-55C.

Branch

This operation branches to a location specified by a general
register value.

Execution branches to the address specified by the contents
of general register rd.

If the contents of general register rd are not aligned to
quadlet, the OperandBoundary exception is raised.

An exemplary embodiment of the Branch instruction is
shown in FIGS. 56A-56C.

Branch Back

This operation branches to a location specified by the pre-
vious contents of general register 0, reduces the current privi-
lege level, loads a value from memory, and restores general
register 0 to the value saved on a previous exception.

Processor context, including program counter and privi-
lege level is restored from general register 0, where it was
saved at the last exception. Exception state, if set, is cleared,
re-enabling normal exception handling. The contents of gen-
eral register 0 saved at the last exception is restored from
memory. The privilege level is only lowered, so that this
instruction need not be privileged.

If the previous exception was an AccessDetail exception,
Continuation State set at the time of the exception affects the
operation of the next instruction after this Branch Back, caus-
ing the previous AccessDetail exception to be inhibited. If
software is performing this instruction to abort a sequence
ending in an AccessDetail exception, it should abort by
branching to an instruction that is not affected by Continua-
tion State.

An exemplary embodiment of the Branch Back instruction
is shown in FIGS. 57A-57C.

Branch Barrier

This operation stops the current thread until all pending
stores are completed, then branches to a location specified by
a general register value.

The instruction fetch unit is directed to cease execution
until all pending stores are completed. Following the barrier,
any previously pre-fetched instructions are discarded and
execution branches to the address specified by the contents of
general register rd.

Access disallowed exception occurs if the contents of gen-
eral register rd is not aligned on a quadlet boundary.

Self-modifying, dynamically-generated, or loaded code
may require use of this instruction between storing the code
into memory and executing the code.

An exemplary embodiment of the Branch Barrier instruc-
tion is shown in FIGS. 58A-58C.

US 9,229,713 B2

111

Branch Conditional

These operations compare two scalar fixed-point general
register values, and depending on the result of that compari-
son, conditionally branches to a nearby code location.

The contents of general registers rd and rc are compared, as
specified by the op field. Ifthe result of the comparison is true,
execution branches to the address specified by the offset field.
Otherwise, execution continues at the next sequential instruc-
tion.

An exemplary embodiment of the Branch Conditional
instruction is shown in FIGS. 59A-59C.

With regards to note number 1 in FIG. 59A, B.G.Z is
encoded as B.L..U with both instruction fields rd and rc equal.

With regards to note number 2 in FIG. 59A, B.GE.Z is
encoded as B.GE with both instruction fields rd and rc equal.

With regards to note number 3 in FIG. 59A, B.L.Z is
encoded as B.L. with both instruction fields rd and rc equal.

With regards to note number 4 in FIG. 59A, B.LE.Z is
encoded as B.GE.U with both instruction fields rd and rc
equal.

Branch Conditional Floating-Point

These operations compare two scalar floating-point gen-
eral register values, and depending on the result of that com-
parison, conditionally branches to a nearby code location.

The contents of general registers rc and rd are compared, as
specified by the op field. Ifthe result of the comparison is true,
execution branches to the address specified by the offset field.
Otherwise, execution continues at the next sequential instruc-
tion.

An exemplary embodiment of the Branch Conditional
Floating-Point instructions is shown in FIGS. 60A-60C.

Branch Conditional Visibility Floating-Point

These operations compare two vector-floating-point gen-
eral register values, and depending on the result of that com-
parison, conditionally branches to a nearby code location.

The contents of general registers rc and rd are compared, as
specified by the op field. Ifthe result of the comparison is true,
execution branches to the address specified by the offset field.
Otherwise, execution continues at the next sequential instruc-
tion.

Each operand is assumed to represent a vertex of the form:
[w z y x] packed into a single general register. The compari-
sons check for visibility of a line connecting the vertices
against a standard viewing volume, defined by the planes:
x=w,x=—w,y=w,y=—w,z=0,7=1. A line is visible (V) if the
vertices are both within the volume. A line is not visible (NV)
is either vertex is outside the volume—in such a case, the line
may be partially visible. A line is invisible (I) if the vertices
are both outside any face of the volume. A line is not invisible
(NI) ifthe vertices are not both outside any face of the volume.

An exemplary embodiment of the Conditional Visibility
Floating-Point instructions is shown in FIGS. 61A-61C.

Branch Down

This operation branches to a location specified by a general
register value, optionally reducing the current privilege level.

Execution branches to the address specified by the contents
of general register rd. The current privilege level is reduced to
the level specified by the low order two bits of the contents of
general register rd.

An exemplary embodiment of the Branch Down instruc-
tion is shown in FIGS. 62A-62C.

Branch Halt

This operation stops the current thread until an exception
occurs.

This instruction directs the instruction fetch unit to cease
execution until an exception occurs.

20

25

30

40

45

60

65

112

An exemplary embodiment of the Branch Halt instruction
is shown in FIGS. 63A-63C.

Branch Hint Immediate

This operation indicates a future branch location specified
as an offset from the program counter.

This instruction directs the instruction fetch unit of the
processor that a branch is likely to occur count times at simm
instructions following the current successor instruction to the
address specified by the offset field.

After branching count times, the instruction fetch unit
should presume that the branch at simm instructions follow-
ing the current successor instruction is not likely to occur. If
count is zero, this hint directs the instruction fetch unit that the
branch is likely to occur more than 63 times.

An exemplary embodiment of the Branch Hint Immediate
instruction is shown in FIGS. 64A-64C.

Branch Immediate

This operation branches to a location that is specified as an
offset from the program counter.

Execution branches to the address specified by the offset
field.

An exemplary embodiment of the Branch Immediate
instruction is shown in FIGS. 65A-65C.

Branch Immediate Link

This operation branches to a location that is specified as an
offset from the program counter, saving the value of the
program counter into general register 0.

The address of the instruction following this one is placed
into general register 0. Execution branches to the address
specified by the offset field.

An exemplary embodiment of the Branch Immediate Link
instruction is shown in FIGS. 66A-66C.

Branch Link

This operation branches to a location specified by a general
register, saving the value of the program counter into a gen-
eral register.

The address of the instruction following this one is placed
into general register rd. Execution branches to the address
specified by the contents of general register rc.

Access disallowed exception occurs if the contents of gen-
eral register rc is not aligned on a quadlet boundary.

Reserved instruction exception occurs if b is not zero.

An exemplary embodiment of the Branch Link instruction
is shown in FIGS. 67A-67C.

Load

These operations add the contents of a first general register
to the shifted and possibly incremented contents of a second
general register to produce a virtual address, load data from
memory, sign- or zero-extending the data to fill a third desti-
nation general register.

An operand size, expressed in bytes, is specified by the
instruction. A virtual address is computed from the sum ofthe
contents of general register rc and the sum of the immediate
value and the contents of general register rb multiplied by
operand size. The contents of memory using the specified
byte order are read, treated as the size specified, zero-ex-
tended or sign-extended as specified, and placed into general
register rd.

If alignment is specified, the computed virtual address
must be aligned, that is, it must be an exact multiple of the size
expressed in bytes. If the address is not aligned an “Operand
Boundary” exception occurs.

An exemplary embodiment of the Load instruction is
shown in FIGS. 68A-68C.

US 9,229,713 B2

113

With regards to note number 5 in FIG. 68A, L..8 need not
distinguish between little-endian and big-endian ordering,
nor between aligned and unaligned, as only a single byte is
loaded.

With regards to note number 6 in FIG. 68A, [..128.B need
not distinguish between signed and unsigned, as the hexlet
fills the destination register.

With regards to note number 7 in FIG. 68A, L..128.AB need
not distinguish between signed and unsigned, as the hexlet
fills the destination register.

With regards to note number 8 in FIG. 68A, L.128.L need
not distinguish between signed and unsigned, as the hexlet
fills the destination register.

With regards to note number 9 in FIG. 68A,[..128. AL need
not distinguish between signed and unsigned, as the hexlet
fills the destination register.

With regards to note number 10 in FIG. 68A, L..U8 need not
distinguish between little-endian and big-endian ordering,
nor between aligned and unaligned, as only a single byte is
loaded.

Load Immediate

These operations compute a virtual address from the con-
tents of a general register and a sign-extended and shifted
immediate value, load data from memory, sign- or zero-ex-
tending the data to fill the destination general register.

An operand size, expressed in bytes, is specified by the
instruction. A virtual address is computed from the sum of the
contents of general register rc and the sign-extended value of
the offset field, multiplied by the operand size. The contents
of memory using the specified byte order are read, treated as
the size specified, zero-extended or sign-extended as speci-
fied, and placed into general register rd.

If alignment is specified, the computed virtual address
must be aligned, that is, it must be an exact multiple of the size
expressed in bytes. If the address is not aligned an “Operand
Boundary” exception occurs.

An exemplary embodiment of the [Load Immediate instruc-
tion is shown in FIGS. 69A-69C.

With regards to note 11 number in FIG. 69A, L.1.8 need not
distinguish between little-endian and big-endian ordering,
nor between aligned and unaligned, as only a single byte is
loaded.

With regards to note 12 number in FIG. 69A, L.1.128.AB
need not distinguish between signed and unsigned, as the
hexlet fills the destination register.

With regards to note 13 number in FIG. 69A, LI1.128.B
need not distinguish between signed and unsigned, as the
hexlet fills the destination register.

With regards to note 14 number in FIG. 69A, LI1.128. AL
need not distinguish between signed and unsigned, as the
hexlet fills the destination register.

With regards to note 15 number in FIG. 69A. L1.128.1 need
not distinguish between signed and unsigned, as the hextet
fills the destination register.

With regards to note 16 number in FIG. 69A, LI1.U8 need
not distinguish between little-endian and big-endian order-
ing, nor between aligned and unaligned, as only a single byte
is loaded.

Store

These operations add the contents of a first general register
to the shifted and possibly incremented contents of a second
general register to produce a virtual address, and store the
contents of a third general register into memory.

An operand size, expressed in bytes, is specified by the
instruction. A virtual address is computed from the sum of the
contents of general register rc and the sum of the immediate
value and the contents of general register rb multiplied by

10

15

20

25

30

35

40

45

50

55

60

65

114

operand size. The contents of general register rd, treated as
the size specified, is stored in memory using the specified byte
order.

If alignment is specified, the computed virtual address
must be aligned, that is, it must be an exact multiple of the size
expressed in bytes. If the address is not aligned an “Operand
Boundary” exception occurs.

An exemplary embodiment of the Store instruction is
shown in FIGS. 70A-70C.

With regards to note 17 number in FIG. 70A, S.8 need not
specify byte ordering, nor need it specify alignment checking,
as it stores a single byte.

Store Double Compare Swap

These operations compare two 64-bit values in the upper
half of two general registers against two 64-bit values read
from two 64-bit memory locations, as specified by two 64-bit
addresses in the lower half of the two general registers, and if
equal, store two new 64-bit values from a third general reg-
ister into the memory locations. The values read from
memory are catenated and placed in the third general register.

Two virtual addresses are extracted from the low order bits
of the contents of general registers rc and rb. Two 64-bit
comparison values are extracted from the high order bits of
the contents of general registers rc and rb. Two 64-bit replace-
ment values are extracted from the contents of general regis-
ter rd. The contents of memory using the specified byte order
are read from the specified addresses, treated as 64-bit values,
compared against the specified comparison values, and if
both read values are equal to the comparison values, the two
replacement values are written to memory using the specified
byte order. If either are unequal, no values are written to
memory. The loaded values are catenated and placed in the
general register specified by rd.

The virtual addresses must be aligned, that is, it must be an
exact multiple of the size expressed in bytes. If the address is
not aligned an “Operand Boundary” exception occurs.

An exemplary embodiment of the Store Double Compare
Swap instruction is shown in FIGS. 71A-71C.

Store Immediate

Those operations add the contents of a general register to a
sign-extended and shifted immediate value to produce a vir-
tual address, and store the contents of a general register into
memory.

An operand size, expressed in bytes, is specified by the
instruction. A virtual address is computed from the sum ofthe
contents of general register rc and the sign-extended value of
the offset field, multiplied by the operand size. The contents
of general register rd, treated as the size specified, are written
to memory using the specified byte order.

The computed virtual address must be aligned, that is, it
must be an exact multiple of the size expressed in bytes. If the
address is not aligned an “Operand Boundary” exception
occurs.

An exemplary embodiment of the X instruction is shown in
FIGS. 72A-72C.

With regards to note number 17 in FIG. 72 A, SI.8 need not
specify byte ordering, nor need it specify alignment checking,
as it stores a single byte.

Store Immediate Inplace

These operations add the contents of a general register to a
sign-extended and shifted immediate value to produce a vir-
tual address, and store the contents of a general register into
memory.

An operand size of 8 bytes is specified. A virtual address is
computed from the sum of the contents of general register rc
and the sign-extended value of the offset field, multiplied by
the operand size. The contents of memory using the specified

US 9,229,713 B2

115

byte order are read and treated as a 64-bit value. A specified
operation is performed between the memory contents and the
orginal contents of general register rd, and the resultis written
to memory using the specified byte order. The original
memory contents are placed into general register rd.

The computed virtual be aligned, that is, it must be an exact
multiple of the size expressed in bytes. If the address is not
aligned an “Operand Boundary” exception occurs.

For the store-compare-swap instruction, prior to executing

116

An exemplary embodiment of the Store Immediate Inplace
instruction is shown in FIGS. 73A-73C.

Store Inplace

These operations add the contents of a first general register
to the shifted and possibly incremented contents of a second
general register to produce a virtual address, and store the
contents of a third general register into memory.

An operand size, expressed in bytes, is specified by the
instruction. A virtual address is computed from the sum ofthe

the operation, general register rd contains the catenation of 10" contents of general register rc and the sum of the irpmediate
the new value (in the high-order bits) and the comparison value and.the contents of general register .rb multlpheq by
value (in the low-order bits). A shuffle (X.SHUFFLE.256 operand size. The contents of memory using the specified
both=new,comp,64,2,0) instruction places the value in the b.yte.order are read and treated as 64 bits. A specified opera-
form needed for the store-compare-swap instruction. A tion is performed between t.he memory contents aI.ld th? ongt-
branch-not-equal instruction can force the operation to be nal contents ofglgleneral .rgg(l;{)er wd, znd t%:lresglt.ls Tvntten to
repeated if the store-compare-swap operation did not write to merory usmglt edspem © ytle oreer. ; OHginal memoty
memory. e computed virtel address must be aligned, hat i, it
Using the above note, there are two ways that a value (held must be an eg(act multiple of the size expresse(fi% in b,ytes. It £he
in general register value) can be indivisibly added to an octlet 5, address is not aligned an “Operand Boundary” exception
of memory (specified by general register base and immediate OCCUTS.
Zgis:(ti).tin ttlﬁzrfov(ifitl:;llo‘g’;gﬁeJ;’E;ergss?ofrgfgﬁgyarls_ ;S:‘i)’ For the store-compare-swap instructiqn, prior to exeguting
; N . the operation, general register rd contains the catenation of
instruction. If memory is altered betwe?en the load and the the new value (in the high-order bits) and the comparison
erte-back, the branch-npt-equal operation forces the opera- 5 value (in the low-order bits). A shuffle (X.SHUFFLE.256
tion to be attempted again: both=new,comp,64,2,0) instruction places the value in the
form needed for the store-compare-swap instruction. A
L LL64AL compobaseoffset branch-not-equal instruction can force the operation to be
G.ADD.64 new=comp,value repeated if the store-compare-swap operation did not write to
X.SHUFFLE.256 both=new,comp,64,2,0 30 memory.
8.CS.1.64.A.L both@base,offset Using the above note, there are two ways that a value (held
B-NE both,comp, 1 b in general register increm) can be indivisibly added to an
octlet of memory (specified by general registers base and
The code above is functionally equivalent to the simpler index). In the code below, the contents of memory is read,
code below, in which the store-add-swap instruction directly 35 added to, then written back using a store-compare-swap
adds a value to memory indivisibly, returning the original instruction. If memory is altered between the load and the
value to a general register: write-back, the branch-not-equal operation forces the opera-
tion to be attempted again:
G.COPY both=value 40
S.AS.L64.AL both@base,offset 1 L.64AL comp=base,index
G.ADD.64 new=conp,increm
Similarly, there are two sequences for indivisibly placing a ?S?gf FALE '25;0mgbtzs_2f$§mp’64’2’o
value under a mask into an octlet of memory (specified by BNE both,comp, 1 b
general register base and immediate offset). In the code 45
wrten.back using 3 Storesompare-swap mmeton. 1 e code sboe is fnctionally cquivlent 0 the simpler
memory is altered between the load and the write-back, the code below, in which the s.tore.:-e.ld.d-swap instruction dlre.ctly
branch-not-equal operation forces the operation to be adii s a value o ey .1nd1V151b1y, returning the original
attempted again: 5o Vvalue to a general register:
G.COPY both=increm
L: él-l\%-)?-L izr‘:g;k;zf,vﬁztmmp S.AS.64.AL both@base,index
X.SHUFFLE.256 both=new,c,omp,,64,2,0 55
S.CS.Lo64AL both@base,offset Similarly, there are two sequences for indivisibly placing a
B.NE both,comp, 1 b value under a mask into an octlet of memory (specified by
general registers base and index). In the code below, the
The code above is functionally equivalent to the simpler contents of memory is read, multiplexed to, then written back
code below, in which the store-add-swap instruction directly 60 using a store-compare-swap instruction. If memory is altered
places a value under a mask into memory indivisibly, return- between the load and the write-back, the branch-not-equal
ing the original value to a general register: operation forces the operation to be attempted again:
X.SHUFFLE.256 both=value,mask,64,2,0 1: L.64. AL comp=base.,index
S.MS.L.64.A.L both@base,offset 65 G.MUX new=mask,value,comp

X.SHUFFLE.256 both=new,comp,64,2,0

US 9,229,713 B2

-continued
S.CS.64.A.L both@base,index
B.NE both ,comp, 1 b

The code above is functionally equivalent to the simpler
code below, in which the store-mux-swap instruction directly
places a value under a mask into memory indivisibly, return-
ing the original value to a general register:

X.SHUFFLE.256
S.MS.64.A.L

both=value,mask,64,2,0
both@base,index

An exemplary embodiment of the Store Inplace instruction
is shown in FIGS. 74A-74C.

Group Add Halve

These operations take operands from two general registers,
perform operations on partitions of bits in the operands, and
place the concatenated results in a third general register.

The contents of general registers rc and rb are partitioned
into groups of operands of the size specified, added, halved,
and rounded as specified, yielding a group of results, each of
which is the size specified. The results never overflow, so
limiting is not required by this operation. The group of results
is catenated and placed in general register rd.

Z (zero) rounding is not defined for unsigned operations,
and a ReservedInstruction exception is raised if attempted. F
(floor) rounding will properly round unsigned results down-
ward.

An exemplary embodiment of the Group Add Halve
instruction is shown in FIGS. 75A-75C.

Group Compare

These operations perform calculations on partitions of bits
in two general register values, and generate a fixed-point
arithmetic exception if the condition specified is met.

Two values are taken from the contents of general registers
rd and rc. The specified condition is calculated on partitions of
the operands. If the specified condition is true for any parti-
tion, a fixed-point arithmetic exception is generated. This
instruction generates no general purpose general register
results.

An exemplary embodiment of the Group Compare instruc-
tion is shown in FIGS. 76 A-76C.

Group Compare Floating-point

These operations perform calculations on partitions of bits
in two general register values, and generate a floating-point
arithmetic exception if the condition specified is met.

The contents of general registers rd and rc are compared
using the specified floating-point condition. If the result of the
comparison is true for any corresponding pair of elements, a
floating-point exception is raised. If a rounding option is
specified, the operation raises a floating-point exception if a
floating-point invalid operation occurs. If a rounding option is
not specified, floating-point exceptions are not raised and are
handled according to the default rules of IEEE 754.

An exemplary embodiment of the Group Compare Float-
ing-point instruction is shown in FIGS. 77A-77C.

Group Copy Immediate

This operation copies an immediate value to a general
register.

A 128-bit immediate value is produced from the operation
code, the size field and the 16-bit imm field. The result is
placed into general register ra.

An exemplary embodiment of the Group Copy Immediate
instruction is shown in FIGS. 78A-78C.

10

15

20

25

30

35

40

45

50

55

60

65

118

Group Immediate

These operations take operands from a general register and
an immediate value, perform operations on partitions of bits
in the operands, and place the concatenated results in a second
general register.

The contents of general register rc is fetched, and a 128-bit
immediate value is produced from the operation code, the size
field and the 10-bit imm field. The specified operation is
performed on these operands, The result is placed into general
register ra.

An exemplary embodiment of the Group Immediate
instruction is shown in FIGS. 79A-79C.

Group Immediate Reversed

These operations take operands from a general register and
an immediate value, perform operations on partitions of bits
in the operands, and place the concatenated results in a second
general register.

The contents of general register rc is fetched, and a 128-bit
immediate value is produced from the operation code, the size
field and the 10-bit imm field. The specified operation is
perfoed on these operands. The result is placed into general
register rd.

An exemplary embodiment of the Group Immediate
Reversed instruction is shown in FIGS. 80A-80C.

Group Inplace

These operations take operands from three general regis-
ters, perform operations on partitions of bits in the operands,
and place the concatenated results in the third general register.

The contents of general registers rd, rc and rb are fetched.
The specified operation is performed on these operands. The
result is placed into general register rd.

General register rd is both a source and destination of this
instruction.

An exemplary embodiment of the Group Inplace instruc-
tion is shown in FIGS. 81A-81C.

Group Reversed Floating-point

These operations take two values from general registers,
perform a group of floating-point arithmetic operations on
partitions of bits in the operands, and place the concatenated
results in a general register.

The contents of general registers ra and rb are combined
using the specified floating-point operation. The result is
placed in general register rc. The operation is rounded using
the specified rounding option or using round-to-nearest if not
specified. If a rounding option is specified, the operation
raises a floating-point exception if a floating-point invalid
operation, divide by zero, overflow, or underflow occurs, or
when specified, if the result is inexact. If a rounding option is
not specified, floating-point exceptions are not raised, and are
handled according to the default rules of IEEE 754.

An exemplary embodiment of the Group Reversed Float-
ing-point instruction is shown in FIGS. 82A-82C.

Group Shift Left Immediate Add

These operations take operands from two general registers,
perform operations on partitions of bits in the operands, and
place the concatenated results in a third general register.

The contents of general registers rc and rb are partitioned
into groups of operands of the size specified. Partitions of the
contents of general register rb are shifted left by the amount
specified in the immediate field and added to partitions of the
contents of general register rc, yielding a group of results,
each of which is the size specified. Overflows are ignored, and
yield modular arithmetic results. The group of results is cat-
enated and placed in general register rd.

An exemplary embodiment of the Group Shift Left Imme-
diate Add instruction is shown in FIGS. 83A-83C.

US 9,229,713 B2

119

Group Shift Left Immediate Subtract

These operations take operands from two general registers,
perform operations on partitions of bits in the operands, and
place the concatenated results in a third general register.

The contents of general registers rc and rb are partitioned
into groups of operands of the size specified. Partitions of the
contents of general register rc are subtracted from partitions
of'the contents of general register rb shifted left by the amount
specified in the immediate field, yielding a group of results,
each of which is the size specified. Overflows are ignored, and
yield modular arithmetic results. The group of results is cat-
enated and placed in general register rd.

An exemplary embodiment of the Group Shift Left Imme-
diate Subtract instruction is shown in FIGS. 84A-84C.

Group Subtract Halve

These operations take operands from two general registers,
perform operations on partitions of bits in the operands, and
place the concatenated results in a third general register.

The contents of general registers rc and rb are partitioned
into groups of operands of the size specified and subtracted,
halved, rounded and limited as specified, yielding a group of
results, each of which is the size specified. The group of
results is catenated and placed in general register rd.

The result of this operation is always signed, whether the
operands are signed or unsigned.

An exemplary embodiment of the Group Subtract Halve
instruction is shown in FIGS. 85A-85C.

Group Ternary

These operations take three values from general registers,
perform a group of calculations on partitions of bits of the
operands and place the catenated results in a fourth general
register.

The contents of general registers rd, rc, and rb are fetched.
Each bit of the result is equal to the corresponding bit of rc, if
the corresponding bit of rd is set, otherwise it is the corre-
sponding bit of rb. The result is placed into general register ra.

An exemplary embodiment of the Group Ternary instruc-
tion is shown in FIGS. 86A-86C.

Crossbar Field

These operations take operands from a general register and
two immediate values, perform operations on partitions of
bits in the operands, and place the concatenated results in the
second general register.

The contents of general register rc is fetched, and 7-bit
immediate values are taken from the 2-bit ih and the 6-bit gsfp
and gsfs fields. The specified operation is performed on these
operands. The result is placed into general register rd.

FIG. 87B shows legal values for the ih, gsfp and gsfs fields,
indicating the group size to which they apply.

The ih, gsfp and gsfs fields encode three values: the group
size, the field size, and a shift amount. The shift amount can
also be considered to be the source bit field position for
group-withdraw instructions or the destination bit field posi-
tion for group-deposit instructions. The encoding is designed
so that combining the gsfp and gsfs fields with a bitwise-and
produces a result which can be decoded to the group size, and
so the field size and shift amount can be easily decoded once
the group size has been determined.

Referring to FIG. 87C, the crossbar-deposit instructions
deposit a bit field from the the lower bits of each group
partition of the source to a specified bit position in the result.
The value is either sign-extended or zero-extended, as speci-
fied.

Referring to FIG. 87D, the crossbar-withdraw instructions
withdraw a bit field from a specified bit position in the each

15

30

40

45

50

60

65

120

group partition of the source and place it in the lower bits in
the result. The value is either sign-extended or zero-extended,
as specified.

An exemplary embodiment of the Crossbar Field instruc-
tion is shown in FIGS. 87A-87F.

Crossbar Field Inplace

These operations take operands from two general registers
and two immediate values, perform operations on partitions
of bits in the operands, and place the concatenated results in
the second general register.

The contents of general registers rd and rc are fetched, and
7-bit immediate values are taken from the 2-bit ih and the
6-bit gsfp and gsfs fields. The specified operation is per-
formed on these operands. The result is placed into general
register rd.

FIG. 88B shows legal values for the ih, gsfp and gsfs fields,
indicating the group size to which they apply.

The ih, gsfp and gsfs fields encode three values: the group
size, the field size, and a shift amount. The shift amount can
also be considered to be the source bit field position for
group-withdraw instructions or the destination bit field posi-
tion for group-deposit instructions. The encoding is designed
so that combining the gsfp and gsfs fields with a bitwise-and
produces a result which can be decoded to the group size, and
so the field size and shift amount can be easily decoded once
the group size has been determined.

Referring to FI1G. 88C, the crossbar-deposit-merge instruc-
tions deposit a bit field from the lower bits of each group
partition of the source to a specified bit position in the result.
The value is merged with the contents of general register rd at
bit positions above and below the deposited bit field. No sign-
or zero-extension is performed by this instruction.

An exemplary embodiment of the Crossbar Field Inplace
instruction is shown in FIGS. 88A-88E.

Crossbar Inplace

These operations take operands from three general regis-
ters, perform operations on partitions of bits in the operands,
and place the concatenated results in the third general register.

The contents of general registers rd, rc and rb are fetched.
The specified operation is performed on these operands. The
result is placed into general register rd.

General register rd is both a source and destination of this
instruction.

An exemplary embodiment of the Crossbar Inplace
instruction is shown in FIGS. 89A-89C.

Crossbar Short Immediate

These operations take operands from a general register and
a short immediate value, perform operations on partitions of
bits in the operands, and place the concatenated results in a
general register.

A 128-bit value is taken from the contents of general reg-
ister rc. The second operand is taken from simm. The speci-
fied operation is performed, and the result is placed in general
register rd.

An exemplary embodiment of the Crossbar Short Imme-
diate instruction is shown in FIGS. 90A-90C.

Crossbar Short Immediate Inplace

These operations take operands from two general registers
and a short immediate value, perform operations on partitions
of bits in the operands, and place the concatenated results in
the second general register.

Two 128-bit values are taken from the contents of general
registers rd and rc. A third operand is taken from simm. Th
specified operation is performed, and the result is placed in
general register rd.

US 9,229,713 B2

121

This instruction is undefined and causes a reserved instruc-
tion exception if the simm field is greater or equal to the size
specified.

An exemplary embodiment of the Crossbar Short Imme-
diate Inplace instruction is shown in FIG. 91A-91C.

Crossbar Swizzle

These operations perform calculations with a general reg-
ister value and immediate values, placing the result in a gen-
eral register.

The contents of general register rc are fetched, and 7-bit
immediate values, icopy and iswap, are constructed from the
2-bit ih field and from the 6-bit icopya and iswapa fields. The
specified operation is performed on these operands. The
result is placed into general register rd/

An exemplary embodiment of the Crossbar Swizzle
instruction is shown in FIGS. 92A-92C.

Crossbar Ternary

These operations take three values from general registers,
perform a group of calculations on partitions of bits of the
operands and place the catenated results in a fourth general
register.

The contents of general registers rd, rc, and rb are fetched.
The specified operation is performed on these operands. The
result is placed into general register ra.

Referring to FIG. 93B, the crossbar select bytes instruction
(X.SELECT.8) takes the catenation of the contents of general
registers rd and rc (as c||d) as one operand, and the contents of
general register rb as a second operand. Each operand is
partitioned into bytes, and the low-order 5 bits of bytes of the
second operand are used to select bytes of the first operand,
numbered in little-endian ordering. The selected bytes are
catenated to form a 128-bit result, which is placed in general
register ra. The contents of the high-order 3 bits of each byte
of general register rb is ignored.

An exemplary embodiment of the Crossbar Ternary
instruction is shown in FIGS. 93A-93D.

Ensemble Extract Immediate

These operations take operands from two general registers
and a short immediate value, perform operations on partitions
of bits in the operands, and place the concatenated results in
a third general register.

For the E.EEXTRACT.I instruction, the contents of general
registers rc and rb are catenated (as b || ¢) and partitioned into
operands of twice the size specified. The group of values is
rounded, limited and extracted as specified, yielding a group
of results, each of which is the size specified. The group of
results is catenated and placed in general register rd. The
results are signed or unsigned as specified, N (nearest) round-
ing is used, and all results are limited to maximum represent-
able signed or unsigned values.

For the EEMUL.X.I instruction, the contents of general
registers rc and rb are partitioned into groups of operands of
the size specified and are multiplied, producing a group of
values. The group of values is rounded, limited and extracted
specified, yielding a group of results that is the size specified.
The group of results is catenated and placed in general regis-
terrd. All results are signed, N (nearest) rounding is used, and
all results are limited to maximum representable signed val-
ues.

Referring to FIG. 94B, an ensemble multiply extract
immediate doublets instruction (E.MUL.X.1.16) multiplies
operand [h g fed cba] by operand [ponm1kj i], yielding
the products [hp go fn em dl ck bj ai], rounded and limited as

specified.
Referring to FIG. 94C, another illustration of ensemble
multiply extract immediate doublets instruction

(E.MUL.X.1.16).

25

30

40

45

50

55

122

Referring to FIG. 94D, an ensemble multiply extract
immediate complex doublets instruction (E.MUL.X.1.C.16)
multiplies operand [hg fedcb a] by operand [ponm1kji],
yielding the result [gp+ho go-hp en+fim em-fn cl+dk ck-dl
aj+bi ai-bj], rounded and limited as specified. Note that this
instruction prefers an organization of complex numbers in
which the real part is located to the right (lower precision) of
the imaginary part.

Referring to FIG. 94E, another illustration of ensemble
multiply extract immediate complex doublets instruction
(EEMULX.IC. 16).

An exemplary embodiment of the Ensemble Extract
Immediate instruction is shown in FIGS. 94A-94G.

Ensemble Extract Immediate Inplace

These operations take operands from three general regis-
ters and a short immediate value perform operations on par-
titions of bits in the operands, and place the catenated results
in the third general register.

The contents of general registers rd, rc, and rb are fetched.
The specified operation is performed on these operands. The
result is placed into general register rd.

For the E.CON.X.I instruction, the contents of general
registers rd and rc are catenated, as c||d, and used as a first
value. A second value is the contents of general register rb.
The values are partitioned into groups of operands of the size
specified and are convolved, producing a group of values. The
group of values is rounded, and limited as specified, yielding
a group of results that is the size specified. The group of
results is catenated and placed in general register rd.

For the EEMUL.ADD.X.I instruction, the contents of gen-
eral registers rc and rb are partitioned into groups of operands
of'the size specified and are multiplied, producing a group of
values to which are added the partitioned and extended con-
tents of general register rd. The group of values is rounded,
limited and extracted as specified, yielding a group of results
that is the size specified. The group of results is catenated and
placed in general register rd.

All results are signed N (nearest) rounding is used, and all
results are limited to maximum representable signed values
for all instructions of this class.

For the E.CON.X.I instruction, the order in which the
contents of general registers rd and rc are catenated is signifi-
cant because the contents of general register rd is overwritten.
The contents are catenated so that the contents of general
register rc is most significant (left) and the contents of general
register rd is least significant (right). This order is favorable
for small convolution (FIR) filters using little-endian operand
ordering where the filter coefficients are no more than 128
bits, as the contents of general register rc can be reused as the
contents of general register rd by a subsequent E.CON.XI
instruction to compute the next sequential vector result.

Referring to FIG. 95B, an ensemble-convolve-extract-im-
mediate-doublets instruction (ECON.X.1.16,
ECON.X.I.M16, or ECON.X.1.U16) convolves vector [x w v
utsrqponmlkji] withvector [hgfedcb a], yielding the
products [ax+bw+cv+du+et+fs+gr+hq . . . as+br+cq+dp+eo+
fn+gm+hl ar+bg+cp+do+en+fm+gl+hk aq+bp+co+dn+em+
fl+gk+hj], rounded and limited as specified.

Note that because the contents of general register rd is
overwritten by the result vector, that the input vector rc|jrd is
catenated with the contents of general register rd on the right,
which is a form that is favorable for performing a small
convolution (FIR) filter (only 128 bits of filter coefficients) on
alittle-endian data structure. (The contents of general register
rc can be reused as the contents of general register rd by a
second E.CON.X instruction that produces the next sequen-
tial vector result.)

US 9,229,713 B2

123

Referring to FIG. 95C, an ensemble-convolve-extract-im-
mediate-complex-doublets instruction (ECON.X.I.C16)
convolves vector [x wvutsrqponmlkji] with vector [h
gtedchbal, yielding the products [ax+bw+cv+du+et-fs+gr+
hq . . . as-bt+cq-dr+eo-fp+gm-hn ar+bg+cp+do+en+fm+gl+
hk ag-br+co-dp+em-fn+gk+hl], rounded and limited as
specified.

Note that general register rd is overwritten, which favors a
little-endian data representation as above. Further, the opera-
tion expects that the complex values are paired so that the real
partis located in aless significant (to the right of) position and
the imaginary part is located in a more-significant (to the left
of) position, which is also consistent with conventional little-
endian data representation.

Referring to FIG. 95D, an ensemble multiply add extract
immediate doublets instruction (E.MUL.ADD.X.1.16) mul-
tiplies operand [hgfedcb a] by operand [po nm1kji], then
adding [x wvutsrq], yielding the products [hp+x go+w fa+v
em+u dl+t ck+s bj+r ai+q], rounded and limited as specified.

Referring to FIG. 95E, another illustration of ensemble
multiply add extract immediate doublets instruction (E.MU-
L.ADDXI.16).

Referring to FIG. 95F, an ensemble multiply add extract
immediate complex doublets instruction (E.MUL.AD-
D.X.1.C.16) multiplies operand [hgfed cb a] by operand [p
onmlkji], then adding [x w v utsr q], yielding the result
[gp+ho+x go-hp+w en+fm+v em-fh+u cl+dk+t ck-dl+s
aj+bi+r ai-bj+q], rounded and limited as specified. Note that
this instruction prefers an organization of complex numbers
in which the real part is located to the right (lower precision)
of the imaginary part.

Referring to FIG. 95G, another illustration of ensemble
multiply add extract immediate complex doublets instruction
(EEMUL.ADD.X.I.C.16).

Ensemble Inplace

These operations take operands from three general regis-
ters, perform operations on partitions of bits in the operands,
and place the concatenated results in the third general register.

The contents of general registers rd, rc and rb are fetched.
The specified operation is performed on these operands. The
result is placed into general register rd.

An exemplary embodiment of the Ensemble Innlace
Instruction is shown in FIGS. 95A-95I.

Ensemble Inplace Floating-point

These operations take operands from three general regis-
ters, perform operations on partitions of bits in the operands,
and place the catenated results in the third general register.

The contents of general registers rd, rc and rb are fetched.
The specified operation is performed on these operands. The
result is placed into general register rd.

General register rd is both a source and destination of this
instruction.

For E.CON instructions, a first value is the catenation of the
contents of general register rc and rd. A second value is the
contents of general register rb. The values are partitioned into
groups of operands of the size specified. The second values
are multiplied with the first values, then summed, producing
a group of result values. The results are rounded to the nearest
representable floating-point value in a single floating-point
operation. Floating-point exceptions are not raised, and are
handled according to the default rules of IEEE 754. The group
of result values is catenated and placed in general register rd.

For E.MUL.ADD instructions, a first and second value are
the contents of general register rc and rb. A third value is the
contents of general register rd. The values are partitioned into
groups of operands of the size specified. The second values
are multiplied with the first values, then added to or subtracted

10

15

20

25

30

35

40

45

50

55

60

65

124

from the third values, producing a group of result values. The
operation is rounded using the specified rounding option or
using round-to-nearest if not specified. If a rounding option is
specified, unless default exception handling is specified, the
operation raises a floating-point exception if a floating-point
invalid operation, overflow, or underflow occurs, or when
specified, if the result is inexact. If a rounding option is not
specified or if default exception handling is specified, float-
ing-point exceptions are not raised, and are handled accord-
ing to the default rules of IEEE 754. The group ofresult values
is catenated and placed in general register rd.

For E.MUL.SUB instructions, a first and second value are
the contents of general register rc and rb. A third value is the
contents of general register rd. The values are partitioned into
groups of operands of the size specified. The second values
are multiplied with the first values, then added to or subtracted
from the third values, producing a group of result values. The
results are rounded to the nearest representable floating-point
value in a single floating-point operation. Floating-point
exceptions are not raised, and are handled according to the
default rules of IEEE 754. The group of result values is
catenated and placed in general register rd.

Referring to FIG. 96B, an ensemble-convolve-floating-
point-half instruction (E.CON.F.16) convolves vector [x w v
utsrqponmlkji] withvector [hgfedcb a], yielding the
products ax+bw+cy+du+et+fs+gr+hq . . . as+br+cq+dp+eo+
fn+gm+hl ar+bg+cp+do+en+fm+gl+hk aq+bp+co+dn+em+
fl+gk++hj].

Note that because the contents of general register rd is
overwritten by the result vector, that the input vector rc|jrd is
catenated with the contents of general register rd on the right,
which is a form that is favorable for performing a small
convolution (FIR) filter (only 128 bits of filter coefficients) on
alittle-endian data structure. (The contents of general register
rc can be reused by a second E.CON.X instruction that pro-
duces the next sequential vector result.)

Referring to FIG. 96C, an ensemble-convolve-complex-
floating-point-half instruction (E.CON.C.F16) convolves
vector [xwvutsrqponmlkji]withvector[hgfedch
a), yielding the products [ax+bw+cv+du+et+fs+gr+hq . . .
as-bt+cq-dr+eo-fp+gm-hn ar+bq+cp+do+en+fm+gl+hk
ag-br+co-dp+em-fn+gk+hl].

Note that general register rd is overwritten, which favors a
little-endian data representation as above. Further, the opera-
tion expects that the complex values are paired so that the real
part is located in a less-significant (to the right of) position
and the imaginary part is located in a more-significant (to the
left of) position, which is also consistent with conventional
little-endian data representation.

An exemplary embodiment of the Ensemble Inplace Float-
ing-point instruction is shown in FIGS. 96 A-96E.

Ensemble Ternary

These operations take three values from general registers,
perform a group of calculations on partitions of bits of the
operands and place the catenated results in a fourth general
register.

The contents of general registers rd, rc and rb are fetched.
The specified operation is performed on these operands. The
result is placed into general register ra.

The contents of general registers rd and rc are partitioned
into groups of operands of'the size specified and multiplied in
the manner of polynomials. The group of values is reduced
modulo the polynomial specified by the contents of general
register rb, yielding a group of results, each of which is the
size specified. The group of results is catenated and placed in
general register ra.

US 9,229,713 B2

125

Example

Referring to FIG. 97B, an ensemble-multiply-Galois-field-
bytes instruction (E.MULG.8) multiplies operand [d15 d14
d13d12 d11 d10d9 d8 d7 d6 d5 d4 d3 d2 d1 dO] by operand
[c15 ¢c14 c¢13 ¢12 ¢11 d10 ¢9 ¢8 ¢7 ¢6 ¢5 ¢4 ¢3 ¢c2 ¢l c0],
modulo polynomial [b], yielding the results [(d15¢15 mod b)
(d14c14 mod b) . . . (d0cO mod b).

An exemplary embodiment of the Ensemble Ternary
instruction is shown in FIGS. 97A-97D.

Ensemble Unary

These operations take operands from a general register,
perform operations on partitions of bits in the operand, and
place the concatenated results in a second general register.

Values are taken from the contents of general register rc.
The specified operation is performed, and the result is placed
in general register rd.

An exemplary embodiment of the Ensemble Unary
instruction is shown in FIGS. 98A-98C.

With regards to note 18 number in FIG. 98A, E.SUM.U.1
is encoded as E.SUM.U.128.

With regards to note 19 number in FIG. 98A, E.SUM.U.1
is encoded as E.SUM.U.128.

Ensemble Unary Floating-point

These operations take one value from a general register
perform a group of floating-point arithmetic operations on
partitions of bits in the operands, and place the concatenated
results in a general register.

The contents of general register rc is used as the operand of
the specified floating-point operation. The result is placed in
general register rd.

The operation is rounded using the specified rounding
option or using round-to-nearest if not specified. If a rounding
option is specified, unless default exception handling is speci-
fied, the operation raises a floating-point exception if a float-
ing-point invalid operation, divide by zero, overflow, or
underflow occurs, or when specified, if the result is inexact. If
a rounding option is not specified or if default exception
handling is specified, floating-point exceptions are not raised,
and are handled according to the default rules of IEEE 754.

The reciprocal estimate and reciprocal square root estimate
instructions compute an exact result for half precision, and a
result with at least 12 bits of significant precision for larger
formats.

An exemplary embodiment of the Ensemble Unary Float-
ing-point instruction is shown in FIGS. 99A-99C.

MEMORY MANAGEMENT

This section discusses the caches, the translation mecha-
nisms, the memory interfaces, and how the multiprocessor
interface is used to maintain cache coherence.

Overview

The Zeus processor provides for both local and global
virtual addressing, arbitrary page sizes, and coherent-cache
multiprocessing. The memory management system is
designed to provide the requirements for implementation of
virtual machines as well as virtual memory.

All facilities of the memory management system are them-
selves memory mapped, in order to provide for the manipu-
lation of these facilities by high-level language, compiled
code.

The translation mechanism is designed to allow full byte-
at-a-time control of access to the virtual address space, with
the assistance of fast exception handlers.

Privilege levels provide for the secure transition between
insecure user code and secure system facilities. Instructions
execute with a privilege specified by a two-bit field in the

10

15

20

25

30

35

40

45

50

55

60

65

126

access information. Zero is the least-privileged level, and
three is the most-privileged level.

Referring to FI1G. 100, the diagram sketches the basic orga-
nization of the memory management system.

In general terms, the memory management starts from a
local virtual address. The local virtual address is translated to
a global virtual address by a LTB (Local Translation Buffer).
In turn, the global virtual address is translated to a physical
address by a GTB (Global Translation Buffer). One of the
addresses, a local virtual address, a global virtual address, or
a physical address, is used to index the cache data and cache
tag arrays, and one of the addresses is used to check the cache
tag array for cache presence. Protection information is
assembled from the LTB, GTB, and optionally the cache tag,
to determine if the access is legal.

This form varies somewhat, depending on implementation
choices made. Because the LTB leaves the lower 48 bits of the
address alone, indexing of the cache arrays with the local
virtual address is usually indentical to cache arrays indexed
by the global virtual address. However, indexing cache arrays
by the global virtual address rather than the physical address
produces a coherence issue if the mapping from global virtual
address to physical is many-to-one.

Starting from a local virtual address, the memory manage-
ment system performs three actions in parallel: the low-order
bits of the virtual address are used to directly access the data
in the cache, a low-order bit field is used to access the cache
tag, and the high-order bits of the virtual address are trans-
lated from a local address space to a global virtual address
space.

Following these three actions, operations vary depending
upon the cache implementation. The cache tag may contain
either a physical address and access control information (a
physically-tagged cache), or may contain a global virtual
address and global protection information (a virtually-tagged
cache).

For a physically-tagged cache, the global virtual address is
translated to a physical address by the GTB, which generates
global protection information. The cache tag is checked
against the physical address, to determine a cache hit. In
parallel, the local and global protection information is
checked.

For a virtually-tagged cache, the cache is checked against
the global virtual address, to determine a cache hit, and the
local and global protection information is checked. If the
cache misses, the global virtual address is translated to a
physical address by the GTB, which also generates the global
protection information.

Local Translation Buffer

The 64-bit global virtual address space is global among all
tasks. In a multitask environment, requirements for a task-
local address space arise from operations such as the UNIX
“fork” function, in which a task is duplicated into parent and
child tasks, each now having a unique virtual address space.
In addition, when switching tasks, access to one task’s
address space must be disabled and another task’s access
enabled.

Zeus provides for portions of the address space to be made
local to individual tasks, with a translation to the global vir-
tual space specified by four 16-bit registers for each local
virtual space. The registers specify a mask selecting which of
the high-order 16 address bits are checked to match a particu-
lar value, and if they match, a value with which to modify the
virtual address. Zeus avoids setting a fixed page size or local
address size; these can be set by software conventions.

US 9,229,713 B2

127

Alocal virtual, address space is specified by the following:

field
name size description
Im 16 mask to select fields of local virtual address to perform match
over
la 16 value to perform match with masked local virtual address
Ix 16 value to xor with local virtual address if matched
Ip 16 local protection field (detailed later)
Physical Address

There are as many LTB as threads, and up to 2 * (8) entries
per LTB. Each entry is 128 bits, with the high order 64 bits
reserved. The physical address of a LTB entry for thread th,
entry en, byte b is:

63 24 2319 18 7643 0
| FFFF FFFF 0A00 000043 54 [] o Je] b
40 12 3 4
Definition
def data,flags <= AccessPhysicalLTB(pa,op,wdata) as
th <= pas3 1o
€N <= Pag 4
if (en < (1 || 0%%)) and (th < T) and (pa,s _¢=0) then
case op of
R:
data < 0%* || LTBArray[th][en]
W
LocalTB[th][en] < wdatag; ¢
endcase
else
data < 0
endif
enddef
Entry Format

These 16-bit values are packed together into a 64-bit LTB
entry as follows:

32 31 16 15 0

16 16

The L'TB contains a separate context of register sets for
each thread, indicated by the th index above. A context con-
sists of one or more sets of Im/la/Ix/lp registers, one set for
each simultaneously accessible local virtual address range,
indicated by the en index above. This set of registers is called
the “Local TB context,” or LTB (Local Translation Buffer)
context. The effect of this mechanism is to provide the facili-
ties normally attributed to segmentation. However, in this
system there is no extension of the address range, instead,
segments are local nicknames for portions of the global vir-
tual address space.

Afailure to match a LTB entry results either in an exception
or an access to the global virtual address space, depending on
privilege level. A single bit, selected by the privilege level
active for the access from a four bit control register field,
global access, ga determines the result. If ga,; is zero (0), the
failure causes an exception, if it is one (1), the failure causes
the address to be directly used as a global virtual address
without modification.

10

15

25

30

35

40

45

50

55

60

65

128

Global Access (fields of control register)

1110 9 8

galga|ga)ga
312(1(0

1 111

Usually, global access is a right conferred to highly privi-
lege levels, so a typical system may be configured with ga0
and gal clear (0), but ga2 and ga3 set (1). A single low-
privilege (0) task can be safely permitted to have global
access, as accesses are further limited by the rwxg privilege
fields. A concrete example of this is an emulation task, which
may use global addresses to simulate segmentation, such as
an x86 emulation. The emulation task then runs as privilege O,
with ga0 set, while most user tasks run as privilege 1, with gal
clear. Operating system tasks then use privilege 2 and 3 to
communicate with and control the user tasks, with ga2 and
ga3 set.

For tasks that have global access disabled at their current
privilege level, failure to match a LTB entry causes an excep-
tion. The exception handler may load an L'TB entry and con-
tinue execution, thus providing access to an arbitrary number
of'local virtual address ranges.

When failure to match a LTB entry does not cause an
exception, instructions may access any region in the local
virtual address space, when a L'TB entry matches, and may
access regions in the global virtual address space when no
LTB entry matches. This mechanism permits privileged code
to make judicious use of local virtual address ranges, which
simplifies the manner in which privileged code may manipu-
late the contents of a local virtual address range on behalf of
a less-privileged client. Note, however, that under this model,
an L'TB miss does not cause an exception directly, so the use
of' more local virtual address ranges than LTB entries requires
more care: the local virtual address ranges should be selected
s0 as not to overlap with the global virtual address ranges, and
GTB misses to LVA regions must be detected and cause the
handler to load an L'TB entry.

Each thread has an independent [.TB, so that threads may
independently define local translation. The size of the LTB for
each thread is implementation dependent and defined as the
LE parameter in the architecture description register, LE is
the log of the number of entries in the local TB per thread; an
implementation may define LE to be a minimum of 0, mean-
ing one L'TB entry per thread, or a maximum of 3, meaning
eight LTB entries per thread. For the initial Zeus implemen-
tation, each thread has two entries and LE=1.

A minimum implementation of an I'TB context is a single
set of Im/la/Ix/lp registers per thread. However, the need for
the LTB to translate both code addresses and data addresses
imposes some limits on the use of the LTB in such systems.
We need to be able to guarantee forward progress. With a
single LTB set per thread, either the code or the data must use
global addresses, or both must use the same local address
range, as must the LTB and GTB exception handler. To avoid
this restriction, the implementation must be raised to two sets
per thread, at least one for code and one for data, to guarantee
forward progress for arbitrary use of local addresses in the
user code (but still be limited to using global addresses for
exception handlers).

A single-set LTB context may be further simplified by
reserving the implementation of the Im and la registers, set-
ting them to a read-only zero value: Note that in such a
configuration, only a single [LA region can be implemented.

US 9,229,713 B2

129 130
-continued
63 32 31 16 15 0
| 0 | Ix | Ip | me — i
16 16 16 endif
endfor

Ifthelargest possible space is reserved for an address space
identifier, the virtual address is partitioned as shown below.
Any of the bits marked as “local” below maybe used as
“offset” as desired.

63
| local
16

48 47 0
offset |
48

To improve performance, an implementation may perform
the L'TB translation on the value of the base general register
(rc) or unincremented program counter, provided that a check
is performed which prohibits changing the unmasked upper
16 bits by the add or increment. If this optimization is pro-
vided and the check fails, an OperandBoundary should be
signaled. If this optimization is provided, the architecture
description parameter LB=1. Otherwise LTB translation is
performed on the local address, la, no checking is required,
and LB=0.

The L'TB protect field controls the minimum privilege level
required for each memory action of read (r), write (w),
execute (x), and gateway (g), as well as memory and cache

attributes of cache control (cc), strong ordering (so), and 3

detail access (da). These fields are combined with corre-
sponding bits in the GTB protect field to control these
attributes for the mapped memory region.

76 5 4 32 0
1p0: |0|0|0|da|so| cc |
11 11 1 3

15 1413 1211 109
Le [x [w]

Ipl: T |

2 2 2 2

Field Description
The meaning of the fields are given by the following table:

size meaning

minimum privilege required for gateway access
minimum privilege required for execute access
minimum privilege required for write access
minimum priyilege rsquired for read access
reserved

detail access

strong ordering

cache control

g %0

o

15}
W = = = R R0 R R

cC

Definition

def ga,LocalProtect <= LocalTranslation(th,ba,la,pl) as
ifLB& (bass.AsG lags 45) then
raise OperandBoundary
endif
me < NONE
fori< Oto (1] 0%5)-1
if lags ag & ~LocalTB[th][i]e3. 4g) = Local TB[th][i]47. 3, then

10

15

20

if me = NONE then
if ~ControlRegister,, g then
raise Local TBMiss
endif
ga<la
LocalProtect <= 0
else
ga < (lags 45 LocalTB[th][me]3; 16) [l 12470
LocalProtect <= Local TB[th][me] s o
endif
enddef

Global Translation Buffer

Global virtual addresses which fail to be accessed in either
the LZC, the MTB, the BTB, or PTB are translated to physical
references in a table, here named the “Global Translation
Buffer,” (GTB).

Each processor may have one or more GTB’s, with each
GTB shared by one or more threads. The parameter GT, the
base-two log of the number of threads which share a GTB,
and the parameter T, the number of threads, allow computa-

5 tion of the number of GTBs (1/2°7), and the number of

35

40

45

50

60

65

threads which share each GTB (297).

Ifthere are two GTBs and four threads (GT=1, T=4), GTB
0 services references from threads 0 and 1, and GTB 1 ser-
vices references from threads 2 and 3.

In the first implementation, there is one GTB, shared by all
four threads (GT=2, T=4). The GTB has 128 entries (G=7).

Per clock cycle, each GTB can translate one global virtual
address to a physical address, yielding protection information
as a side effect.

A GTB miss causes a software trap. This trap is designed to
permit a fast handler for GlobalTBMiss to be written in soft-
ware, by permitting a second GTB miss to occur as an excep-
tion, rather than a machine check.

Physical address

There maybe as many GTB as threads, and up to 2'° entries
per GTB. The physical address of a GTB entry for thread th,
entry en, byte b is:

63 2423 1918 43
| FFFF FFFF 0C00 0000¢3 24 | th |
40 5 15

en |

0
o]
4

Note that in the diagram above, the low-order GT bits of the
th value are ignored, reflecting that 27 threads share a single
GTB. A single GTB shared between threads appears multiple
times in the address space. GTB entries are packed together
so that entries in a GTB are consecutive:

Definition

def data,flags <= AccessPhysical GTB(pa,op,wdata) as
th = pags. 10,67 [097
Cll <= paig 4
if (en < (1]/0%)) and (th < T) and (pag, 67.10 = 0) then
case op of
R:
data < GTBArray[ths g7][en]
W:
GTBArray[ths 7][en] < wdata
endcase
else

US 9,229,713 B2

131
-continued
data < 0
endif
enddef
Entry Format
Each GTB entry is 128 bits. The format of a GTB entry is:
63 76 0
| & 0
57 7
127 7271 64
| P [et]
40 8
6 5 4 3 2 0

gp0: |0| 0 |da|so|
1 1 1 1 3

cC |

71 7069 6867 6665 4

e (& [[] -]

Field Description

gs=ga+size/2: 256 =size=25%, ga, global address, is aligned
(a multiple of) size.

px=paAga, pa, ga, and px are all aligned (a multiple of) size
The meaning of the fields are given by the following table:

name size meaning

gs 57 global address with size

24 56 physical xor

g 2 minimum privilege required for gateway access
X 2 minimum privilege required for execute access
W 2 minimum privilege required for write access

T 2 minimum privilege required for read access

0 1 reserved

da 1 detail access

so 1 strong ordering

cc 3 cache control

If the entire contents of the GTB entry is zero (0),the entry
will not match any global address at all. If a zero value is
written, a zero value is read for the GTB entry. Software must
not write a zero value for the gs fleld unless the entire entry is
a zero value.

It is an error to write GTB entries that multiply match any
global address; all GTB entries must have unique, non-over-
lapping coverage of the global address space. Hardware may
produce a machine check if such overlapping coverage is
detected, or may produce any physical address and protection
information and continue execution.

Limiting the GTB entry size to 128 bits allows up to replace
entries atomically (with a single store operation), which is
less complex than the previous design, in which the mask
portion was first reduced, then other entries changed, then the
mask is expanded. However, it is limiting amount of attribute
information or physical address range we can specify. Con-
sequently, we are encoding the size as a single additional bit
to the global address in order to allow for attribute informa-
tion.

—

5

20

25

30

35

40

45

55

60

65

132

Definition

def pa,GlobalProtect < GlobalAddressTranslation(th,ga,pl,lda) as
me <= NONE
fori<—0to (1]0%-1
if GlobalTB[ths_s7][i] = O then
size < (Global TB[ths_s7][is3..7 and (0°*-Global TB(ths, s7][iles.7) 1| 0°
if ((g263.50%) i (Global TB[ths_][ilss ¢l0%)) and (0%*-size)) = O then
me < GlobalTBJths_s][i]
endif
endif
endfor
if me = NONE then
if Ida then
PerformAccessDetail (AccessDetailRequiredByLocalTB)
endif
raise GlobalTBMiss
else

pa < (g83.8 i GlobalTB[ths,_s7l[me]i27.7) | 827.0
GlobalProtect < GlobalTB[ths_g7][me]7; g4 || 0' || Global TB[ths_s7][me]

6.0
endif
enddef

GTB Registers

Memory exceptions, it is possible for two threads to nearly
simultaneously invoke software GTB miss exception han-
dlers for the same memory region. In orderto avoid producing
improper GTB state in such cases, the GTB includes access
facilities for indivisibly checking and then updating the con-
tents of the GTB as a result of a memory write to specific
addresses.

A 128-bit write to the address GTBUpdateFill (fill=1),as a
side effect, causes first a check ofthe global address specified
in the data against the GTB. Ifthe global address check results
in a match, the data is directed to write on the matching entry.
If'there is no match, the address specified by GTBLastis used,
and GTBLast is incremented. If incrementing GTBLast
results in a zero value, GTBLast is reset to GTBFirst, and
GTBBump is set. Note that if the size of the updated value is
not equal to the size of the matching entry, the global address
check may not adequately ensure that no other entries also
cover the address range of the updated value. The operation is
unpredictable if multiple entries match the global address.

The GTBUpdateFill register is a 128-bit memory-mapped
location, to which a write operation performes the operation
defined above. A read operation returns a zero value. The
format of the GTBUpdateFill register is identical to that of a
GTB entry.

An alternative write address, GTBUpdate, (fill=0) updates
a matching entry, but makes no change to the GTB if no entry
matches. This operation can be used to indivisibly update a
GTB entry as to protection or physical address information.

Definition

def GTBUpdateWrite(th,fill data) as
me <= NONE
fori< 0to(1]0%) -1
size < (Global TB[ths_¢][ile3.7 and (0%*-Global TB(ths_ o] [iles.7)) |
08
if ((datags _[0%) i (Global TB[ths_s][i]ss.50%)) and (0%*-size) = O then
me < i
endif
endfor
if me = NONE then
if fill then
GlobalTB[ths 47][GTBLast[ths s7]] < data
GTBLast[ths 7] <= (GTBLastths g7+ .10
if GTBLast[ths 7] =0 then
GTBLast[ths_ 7] < GTBFirst[ths 7]
GTBBump[ths ¢7] < 1
endif
endif

US 9,229,713 B2

133

-continued

else
Global TB[ths 7][me] < data
endif
enddef

Physical address

There may be as many GTB as threads, and up to 2'!
registers per GTB (5 registers are implemented). The physical
address of a GTB control register for thread th, register rn,
byte b is:

63 2423 1918 87 43 0
| FEEFF FFFF 0D00 000053__24| th | | 0 |b|
40 5 11 4 4

m

Note that in the diagram above, the low-order GT bits of the
th value are ignored, reflecting that 27 threads share single
GTB registers. A single set of GTB registers shared between
threads appears multiple times in the address space, and
manipulates the GTB of the threads with which the registers
are associated.

The GTBUpdate register is a 128-bit memory-mapped
location, to which a write operation performes the operation
defined above. A read operation returns a zero value. The
format of the GTBUpdateFill register is identical to that of a
GTB entry.

The registers GTBLast, GTBFirst, and GTBBump are
memory mapped. The GTBLast and GTBFirst registers are G
bits wide, and the GTBBpmp register is one bit:

63 GG-1 0
| 0 | GTBLast |
48 G
63 GG-1 0
| 0 | GTBFirst |
48 G
Definition

def data,flags < AccessPhysical GTBRegisters(pa,op,wdata) as
th < pazs._ 19,6711 097
I <= Ppajg g
if tm < 5) and (th <T) and (pas 710 =0) and (pa;_4 = 0) then
case 1 || op of
O R, 1| R:
data < O
0| W, 1||W:
GTBUpdateWrite(th,rm,wdata)
2 |R:
data < 0%C|| GTBLast[ths_g7]
2 |W:
GTBLast[ths_ 7] < wdatag | o
3|R:
data < 0%+ || GTBFirst[ths 7]
3w
GTBFirst[ths 7] < wdatag | ¢
3|R:
data < 0%% | GTBBump|ths_s7]
3w
GTBBumplths ;] < wdata,
endcase
else
data < 0
endif
enddef

Level One Cache
The next cache level, here named the “Level One Cache,”
(LOC) is four-set-associative and indexed by the physical

10

15

20

25

30

35

40

45

50

55

60

65

134

address. The eight memory addresses are partitioned into up
to eight addresses for each of eight independent memory
banks. The LOC has a cache block size of 256 bytes, with
triclet (32-byte) sub-blocks.

The LOC may be partitioned into two sections, one part
used as a cache, and the remainder used as “niche memory”.
Niche memory is at least as fast as cache memory, but unlike
cache, never misses to main memory. Niche memory may be
placed at any virtual address, and has physical addresses fixed
in the memory map. The nl field in the control register con-
figures the partitioning of LOC into cache memory and niche
memory.

The LOC data memory is (256+8)x4x(128+2) bits, depth
to hold 256 entries in each of four sets, each entry consisting
of'one hexlet of data (128 bits), one bit of parity, and one spare
bit. The additional 8 entries in each of four sets hold the LOC
tags, with 128 bits per entry for % ofthe total cache, using 512
bytes per data memory and 4K bytes total.

There are 128 cache blocks per set, or 512 cache blocks
total. The maximum capacity of the LOC is 128k bytes. Used
as a cache, the LOC is partitioned into 4 sets, each 32k bytes.
Physically, the LOC is partitioned into 8 interleaved physical
blocks, each holding 16k bytes.

The physical address pa63 . . . 0 is partitioned as below into
a 52 to 54 bit tag (three to five bits are duplicated from the
following field to accommodate use of portion of the cache as
niche), 8-bit address to the memory bank (7 bits are physical
address (pa), 1 bit is virtual address (v)), 3 bit memory bank
select (bn), and 4-bit byte address (bt). All access to the LOC
are in units of 128 bits (hexlets), so the 4-bit byte address (bt)
does not apply here. The shaded field (pa,v) is translated via
nl to a cache identifier (ci) and set identifier (s1) and presented
to the LOC as the LOC address to LOC bank bn.

63 1514 876 43 0
| tag | pa |V| bn |bt|

49 7 1 3 4

The LOC tag consists of 64 bits of information, including
a 52 tp 54-bit tag and other cache state information. Only one
MTB entry at a time may contain a LOC tag.

With 256 byte cache lines, there are 512 cache blocks. At
64 bits per tag, the cache tags require 4k bytes of storage. This
storage is adjacent to the LOC data memory itself, using
physical addresses =1024 . . . 1055. Alternatively (see
detailed description below), physical addresses =0. .. 31 may
be used.

The format of a LOC tag entry is shown below.

63 1211 0

tag Is
52 12

11 10 9 87 0

|da|vs|mesi |

1 1 2 8

The meaning of the fields are given by the following table:

name size meaning

tag 52 physical address tag
da 1 detail access (or physical address bit 11)

US 9,229,713 B2

-continued
name size meaning
vs 1 victim select (or physical address bit 10)
mesi 2 coherency: modified (3), exclusive (2), shared (1), invalid (0)
tv 8 triclet valid (1) or invalid (0)

To access the LOC, a global address is supplied to the
Micro-Tag Buffer (MTB), which associatively looks up the
global address into a table holding a subset of the LOC tags.
In particular, each MTB table entry contains the cache index
derived from physical address bits 14 . . . 8, ci, (7 bits) and set
identifier, si, (2 bits) required to access the LOC data. Each
MTB table entry also contains the protection information of
the LOC tag.

With an MTB hit, protection information is supplied from
the MTB. The MTB supplies the resulting cache index (ci,
from the MTB), set identifier, si, (2 bits) and virtual address
(bit 7, v, from the LA), which are applied to the LOC data
bank selected from bits 6 . . . 4 of the LA. The diagram below
shows the address presented to LOC data bank bn.

136

Values for nl in the range 113 .. . 127 require more than 52
physical address tag bits in the LOC tag and a requisite
reduction in LOC features. Note that the presence of bits
14 ... 10 of the physical address in the LOC tag is a result of
the possibility that, witham=64 . . . 127, the cache index value
cicannot be relied upon to supply bit 14. .. 8. Bits 9... 8 can
be safely inferred from the cache index value ci, so long as nl
isintherange O ... 124. When nl is in the range 113 . .. 127,
the da bit is used for bit 11 of the physical address, so the Tag
detail access bit is suppressed. When nl is in the range
121...127, thevsbitis used for bit 10 of the physical address,
so0 victim selection is performed without state bits in the LOC
tag. When nl is in the range 125. . . 127, the set associativity
is decreased, so thatsi, is used for bit 9 of the physical address
and whennlis 127, si, is used for bit 8 of the physical address.

Four tags are fetched from the LOC tags and compared
against the PA to determine which of the four sets contain the
data. The four tags are contained in two consecutive banks;
they may be simultaneously or independently fetched. The
diagram below shows the address presented to LOC data bank

(ci, . ollsip-

10 9 54 0
10 9 32 10 address: [C 0 cig.2
address: | 0 | cl | si | v | T
25
1 5 5
1 7 2 1
5 0 2 1 0
i
o . o[

With an MTB miss, the GTB (described below) is refer-
enced to obtain a physical dress and protection information.

To select the cache line, a 7-bit niche limit register nl is
compared against the value of pa,, from the GTB. If
pa,, s<nl, a7-bitaddress modifier register am is inclusive-
or’ed againstpa,, &, producingacacheindex, ci. Otherwise
pa,, gisusedasci. Cachelines 0...nl-1, and cache tags
0...nl-1, are available for use as niche memory. Cache lines
nl... 127 and cache tags nl . . . 127 are used as LOC.
cil(pay, . s<al)?(pay, . sllam)ipa, . 5

The address modifier am is (17-708(128-710)|| 7og(128-nDy The
bt field specifies the least-significant bit used for tag, and is
(nl<112)?12 : 8+log(128-nl):

40

45

2 1

Note that the CT architecture description variable is
present In the above address. CT describes whether dedicated
locations exist in the LOC for tags at the next power-of-two
boundary above the LOC data. The niche-mapping mecha-
nism can provide the storage for the LOC tags, so the exist-
ence of these dedicated tags is optional: If CT=0, addresses at
the beginning of the LOC (0 . . . 31 for this implementation)
are used for LOC tags, and the nl value should be adjusted
accordingly by software.

The LOC address (ci||si) uniquely identifies the cache loca-
tion, and this LOC address is associatively checked against all
MTB entries on changes to the LOC tags, such as by cache
block replacement, bus snooping, or software modification.
Any matching MTB entries are flushed, even if the MTB
entry specifies a different global address—this permits
address aliasing (the use of a physical address with more than
one global address.

With an LOC miss, a victim set is selected (LOC victim
selection is described below), whose contents, if any sub-
block is modified, is written to the external memory. A new
LOC entry is constructed with address and protection infor-
mation from the GTB, and data fetched from external

The diagram below shows the contents of LOC data
memory banks O . . . 7 for addresses 0 . . . 2047:

nl am bt
0 0 12
1...64 64 11 50
65...96 96 12
97...112 112 12
113...120 120 11
121...124 124 10
125...126 126 9
127 127 8 55 emory.
address bank 7

. bank1 bank 0

[R N N S ™)

line 0, hexlet 7, set O
line 0, hexlet 15, set O
line 0, hexlet 7, set 1
line 0, hexlet 15, set 1
line 0, hexlet 7, set 2
line 0, hexlet 15, set 2
line 0, hexlet 7, set 3

line 0, hexlet 1, set O
line 0, hexlet 9, set 0
line 0, hexlet 1, set 1
line 0, hexlet 9, set 1
line O, hexlet 1, set 2
line 0, hexlet 9, set 2
line 0, hexlet 1, set 3

line 0, hexlet 0, set 0
line 0, hexlet 8, set 0
line 0, hexlet 0, set 1
line 0, hexlet 8, set 1
line 0, hexlet 0, set 2
line 0, hexlet 8, set 2
line 0, hexlet 0, set 3

137

US 9,229,713 B2

-continued

address bank 7

bank 1

bank 0

line O, hexlet 15, set 3
line 1, hexlet 7, set O
line 1, hexlet 15, set O
line 1, hexlet 7, set 1
line 1, hexlet 15, set 1
line 1, hexlet 7, set 2
line 1, hexlet 15, set 2
line 1, hexlet 7, set 3
line 1, hexlet 15, set 3

line 127, hexlet 7, set O

line 127, hexlet 15, set O

line 127, hexlet 7, set O

line 127, hexlet 15, set O

line 127, hexlet 7, set O

line 127, hexlet 15, set O

line 127, hexlet 7, set O

line 127, hexlet 15, set O
tag line 127, sets 3 and 2
tag line 127, sets 3 and 2

tag line 127, sets 3 and 2

reserved

reserved

line 0, hexlet 9, set 3
line 1, hexlet 1, set 0
line 1, hexlet 9, set 0
line 1, hexlet 1, set 1
line 1, hexlet 9, set 1
line 1, hexlet 1, set 2
line 1, hexlet 9, set 2
line 1, hexlet 1, set 3
line 1, hexlet 9, set 3

line 127, hexlet 1, set O
line 127, hexlet 9, set O
line 127, hexlet 1, set 1
line 127, hexlet 9, set 1
line 127, hexlet 1, set 2
line 127, hexlet 9, set 2
line 127, hexlet 1, set 3
line 127, hexlet 9, set 3
tag line 0, sets 3 and 2

tag line 4, sets 3 and 2

tag line 124, sets 3 and 2

reserved

reserved

line 0, hexlet 8, set 3
line 1, hexlet 0, set 0
line 1, hexlet 8, set 0
line 1, hexlet 0, set 1
line 1, hexlet 8, set 1
line 1, hexlet 0, set 2
line 1, hexlet 8, set 2
line 1, hexlet 0, set 3
line 1, hexlet 8, set 3

line 127, hexlet 0, set O
line 127, hexlet 8, set O
line 127, hexlet 0, set 1
line 127, hexlet 8, set 1
line 127, hexlet 0, set 2
line 127, hexlet 8, set 2
line 127, hexlet 0, set 3
line 127, hexlet 8, set 3
tag line 0, sets 1 and O

tag line 4, sets 1 and 0

tag line 124, sets 1 and O

reserved

reserved

The following table summarizes the state transitions

required by the LOC cache:

cc op mesi vbusop c X mesi v W m notes

NC R x x uncached read

NC W x x uncached write

CD R I x uncached read

CD R x 0 uncached read

CD R MES 1 (hit)

CD W I x uncached write

CD W x 0 uncached write

CD W MES 1 uncached write

WT/WA R I X triclet read 0 X 1

WT/WA R I X triclet read 1 0 S 1

WT/WA R I X triclet read 1 1 E 1

WT/WA R MES O triclet read 0 X inconsistent KEN#
WT/WA R S 0 triclet read 1 0 1

WT/WA R S 0 triclet read 1 1 1 E->S: extra sharing
WT/WA R E 0 triclet read 1 0 1

WT/WA R E 0 triclet read 1 1 S 1 shared block
WI/WA R M 0 triclet read 1 0 S 1 other subblocks M->T
WI/WA R M 0 triclet read 1 1 1 E->M: extra dirty
WT/WA R MES 1 (hit)

WT W I x uncached write

WT W x 0 uncached write

WT W MES 1 uncached write 1

WA W I X triclet read 0 X 1 throwaway read
WA W I X triclet read 1 0 S 1 1 1

WA W I X triclet read 1 1 M 1 1

WA W MES O triclet read 0 X 1 1 inconsistent KEN#
WA W S 0 triclet read 1 0 S 1 1 1

WA W S 0 triclet read 1 1 M 1 1

WA w S 1 write 0 S 1 1

WA W S 1 write 1 S 1 1 E->S:extra sharing
WA W E 0 triclet read 1 0 S 1 1 1

WA W E 0 triclet read 1 1 E 1 1 1

WA W E 1 (hit) X M 1 E->M: extra dirty
WA W M 0 triclet read 1 0 M 1 1 1

138

US 9,229,713 B2
139 140

-continued

cc op mesi vbusop c X mesi v W m notes
WA W M 0 triclet read 1 1 M 1 1
WA W M 1 (hit) X M 1
cc cache control
o operation: R = read, W = write
mesi current mesi state
v current tv state
busop bus operation
c cachable (triclet) result
X exclusive result
mesi new mesi state
v new tv state
W cacheable write after read
m merge store data with cache line data
notes other notes on transition

Definition

def datatda <= LevelOneCacheAccess(pa,size,lda,gda,cc,op,wd) as
// cache index
am < (17480280 || los(128-nD)
ci < (payy g<nl) ? (pay, gll(am) : paj, g
bt < (nl=112)? 12 : 8+log(128-nl)
// fetch tags for all four sets
tagl0 < ReadPhysical(OXFFFFFFFF000000004;_,6/|CT]|0%|lci[l0*]0%, 128)
Tag[0] < taglOq; o
Tag[1] < tagl0,57 64
tag32 < ReadPhysical(OXFFFFFFFF000000004;_,6/|CT]|0%|lci[1*]0%, 128)
Tag[2] < tag3263 o
Tag[3] < tag3257 64
vsc < (Tag[3] o || Tag[2]10) (Tag[1]so || Tag[0]10)
// look for matching tag
si < MISS
fori<to3
if (Tag[iles. 10 [l i1.0 || 07)63..6 = Pacs. s then
si<1
endif
endfor
// detail access checking on MISS
if (si = MISS) and (lda = gda) then
if gda then
PerformAccessDetail(AccessDetail RequiredByGlobal TB)
else
PerformAccessDetail(AccessDetailRequiredByLocal TB)
endif
endif
// if no matching tag or invalid MEST or no sub-block, perform cacheable read/write
bd < (si = MISS) or (Tag[si]o g = 1) or ((op=W) and (Tag[si]y g ~ 8)) or ~Tag]sil,, ,
if bd then
if (op=W) and (co = WA) and ((si = MISS) or ~Tag[si],, s
data,cen,xen < AccessPhysical(pa,size,cc,R,0)
//if cache disabled or shared, do a write through
if ~cen or ~xen then
data,cen,xen <— AccessPhysical(pa.size,cc,W,wd)
endif
else
data,cen,xen < AccessPhysical(pa,size,cc,op,wd)
endif
al < cen
else
al <0
endif
// find victim set and eject from cache
if al and (si = MISS or Tag[si]y ¢ = 1) then
case bt of
12..11:
si < vsc
10..8:
gvsc < gvsc + 1
si < (bt=9) : pagy : gvsclApa11 | (bt=8) : pag : gvscoApa10

or (Tag(si)g g = S)) then

endcase
if Tag[si]y g = M then
fori«<0to7

if Tag[si]; then
vea < OxFFFFFFFF0000000043 14/|0]cillsiliz. o/l0*

US 9,229,713 B2
141 142

-continued

vdata < ReadPhysical(vca,256)
vpa < (Tag[silss. 10l 8i1.0 | 0))ea. olIPa5. 1. 5lliz. ol OJ0*
WritePhysical(vpa, 256, vdata)
endif
endfor
endif
if Tag[vsc+1]y g =1 then
nvsc <= vsc + 1
elseif Tag[vsc+2]y g =1 then
nvsc < vsc + 2
elseif Tag[vsc+3], g =1 then
nvsc < vsc + 3
else
case cc of
NC, CD, WT, WA, PF:
nvsc < vsc + 1
LS, SS;
nvsc < vsc //no change
endif
endcase
endif
tda <0
sm « 07245 I 1t | 0paT.5
else
NVSC < VSC
tdn < (bt>11) ? Tag[sl],; : 0
if al then
sm < Tag[si]
endif
endif
// write new data into cache and update victim selection and other tag fields
if al then
if op=R then
mesi < xen?E: S
else
mesi < xen ? M : 1 TODO
endif
case bt of
12:
Tag[si] < pacs. » | tda || Taglsi 2],0 nvse
Tag[si 1];0 < Tag[si 3];o nvscg,
11:
Tag[si] < pags s, || Tag[si 2110 1vsc,;, || mesi || sm
Tag[si 1];0 < Tag[si 3];o nvsc, g,
10:
Tag[si] < Pags 4, | mesi || sm
endcase
dt<1
nca < OXFFFFFFFF000000004; ;o/|0]cilsilpa;_s/0*
WritePhysical(nca, 256, data)
endif
// retrieve data from cache
if ~bd then
nca < OxFFFFFFFF000000004; ;o/0]lcilsi|pa;_s[0*
data < ReadPhysical(nca, 128)
endif
// write data into cache
if (op=W) and bd and al then
nca < OxFFFFFFFF000000004; ;o/0]lcilsi|pa;_s[0*
data < ReadPhysical(nca, 128)
mdata — data‘l27..8*(size+pa3..0) I WdS*(size+pa3..0)—1..8*pa3..0 I data‘s*pa3..0..0
WritePhysical(nca, 128, mdata)
endif
// prefetch into cache
if al=bd and (cc=PF or cc=LS) then
af < 0 // abort fetch if af becomes 1
fori«<0to7
if ~Tag[si]; and ~af then
data,cen,xen < AccessPhysical(pags_glis_o]0]0%,256,c¢,R,0)
if cen then
nca < OxFFFFFFFFO000000043 4/l0]cillsillis_oll0*
WritePhysical(nca, 256, data)
Tag([si]; <= 1
dt <1
else
af« 1
endif
endif
endfor

7.1l4pa7.s I 1t I Ta‘g[Si]pa]_Sfl..O

<i [mesi || sm

US 9,229,713 B2

-continued
endif
// cache tag write if dirty
if dt then
ut < Tag[s],||14)] Tag[sL|l0*
WritePhysical(OxFFFFFFFF00000000;_ 1o/ CT[0°|leillsi, 0%, 128, nt)
endif
enddef
10
Physical Address o -continued
The LOC data memory banks are accessed implicitly by
cached memory accesses to any physical memory location as Byte offset
shown above. The LOC data memory banks are also accessed
licitly b hed to particul hvsi- 15 262048 bank 2, address 2047
explicitly by uncached memory accesses to particular physi- 262064 bank 3. address 2047
cal address ranges. The address mapping of these ranges is 262080 bank 4, address 2047
designed to facilitate use of a contiguous portion of the LOC 262096 bank 5, address 2047
: 262112 bank 6, address 2047
cache as mqhe memory. 262128 bank 7, address 2047
The physical address of a LOC hexlet for LOC address ba,
bank bn, byte b is: 20
Definition
63 1817 76 43 0 -
| FFFF FEFF 0000 000043 15 | ba | b | b | def data <— AcsessPhysicalLOC(pa,op,wd) as
= bank < psg 4
46 i 304 2 addr < pa,; ;
case op of
R:
Within the explicit LOC data range, starting from a physi- 1d < L}?oc(ﬁirzy[b;nk] [ng;]k]
. CIC < eaundancy
cal address pa,, ,, the diagram below shows the LOC data ~ (cre and rd, 30) or (~crc and rd g o)
address (pa;,) presented to LOC data bank (pag ,). 30 p[0] < 0
fori<0to 128 by 1
pli+1] < p[i] data;
endfor
10 0 if ControlRegisterg; and (p[129] = 1) then
address: | pay7.7 | raise CacheError
11 35 endif
W
p[0] <0
forl < 0to127by 1
pli+1] < pli] i
endfor
5 0 40 wdpg < ~p[128]
bank crc <= LOCRedundancy[bank]
ank:

3

The diagram below shows the LOC data memory bank and
address referenced by byte address offsets in the explicit LOC
data range. Note that this mapping includes the addresses use
for LOC tags.

Byte offset

0 bank 0, address 0

16 bank 1, address 0

32 bank 2, address 0

48 bank 3, address 0

64 bank 4, address 0

80 bank 5, address 0

96 bank 6, address 0

112 bank 7, address 0

128 bank 0, address 1

144 bank 1, address 1

160 bank 2, address 1

176 bank 3, address 1

192 bank 4, address 1

208 bank 5, address 1

224 bank 6, address 1

240 bank 7, address 1
262016 bank 0, address 2047
262032 bank 1, address 2047

50

55

60

65

rdata <= (crc5¢ o and wd 54 o) OF (~CIC) 56 o and Wd 155 5)
LOCArray[bank][addr] < wd, 55 ;57| rdata || wd; o
endcase
enddef

Level One Cache Stress Control

LOC cells may be fabricated with marginal parameters, for
which changes in clock timing or power supply voltage may
cause these LOC cells to fail or pass. When testing the LOC
while the part is in a normal circuit environment, rather than
a special test environment with changeable power supply
levels, cells with marginal parameters may not reliably fail
testing.

To combat this problem, two bits of the control register,
LOC stress, may be set to stress the circuit environment while
testing. Under normal operation, these bits are cleared (00),
while during stress testing, one or more of these bits are set
(01, 10, 11). Self-testing should be performed in each of the
environment settings, and the detected failures combined
together to produce a reliable test for cells with marginal
parameters.

Level One Cache Redundancy

The LOC contains facilities that can be used to avoid minor
defects in the LOC data array.

Each LOC bank has three additional bits of data storage for
each 128 bits of memory data (for a total of 131 bits). One of

US 9,229,713 B2

145

these bits is used to retain odd parity over the 128 bits of
memory data, and the other two bits are spare, which can be
pressed into service by setting a non-zero value in the LOC
redundancy control register for that bank.

Each row of a LOC bank contains 131 bits: 128 bits of
memory data, one bit for parity, and two spare bits:

130 129 128 127 0

| spare |p | data |
2 1 128

128 127 0

| pc| data |

1 128

Each bit set in the control word causes the corresponding
data bit to be selected from a bit address increased by two:
output<—(data and ~control) or ((spare,|lp||data,,, ,) and
control)
parity<—(p and ~pe) or (spare ; and pe)

The LOC redundancy control register has 129 bits, but is
written with a 128-bit value. To set the pc bit in the LOC
redundancy control, a value is written to the control with
either bit 124 set (1) or bit 126 set (1). To set bit 124 of the
LOC redundancy control, a value is written to the control with
bothbit 124 set(1) and 126 set (1). When the LOC redundancy
control register is read, the process is reversed by selecting the
pc bit instead of control bit 124 for the value of bit 124 if
control bit 126 is zero (0).

This system can remove one defective column at an even
bit position and one defective column at an odd bit position
within each LOC block. For each defective column location,
x, LOC control bit must be set at bits x, x+2, x+4, X+6, . . . If
the defective column is in the parity location (bit 128), then
set bit 124 only. The following table defines the control bits
for parity, bit 126 and bit 124: (other control bits are same as
values written).

value s value sy pc control ¢ control 5y
0 0 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 1 1 1
Physical address

The LOC redundancy controls are accessed explicitly by
uncached memory accesses to particular physical address
ranges.

The physical address of a LOC redundancy control for
LOC bank bn, byte b is:

63 7

FFFF FFFF 0900 0000¢;

57

Definition

def data <= AccessPhysicalLOCRedundancy(pa,op,wd) as
bank < pag 4
case op of

5

10

15

20

25

30

40

45

50

55

60

65

146

-continued

R:

rd <= LOCRedundancy[bank]

data < 1d)57 12sl(rd)26 7 1104 1 1 5g)lrd 123 0

W:
1d <= (wd)56 01 Wd 154)[Wd 157,125 (Wd 56 and wdj54)[Wd 123 6
LOCRedundancy[bank] < rd

endcase
enddef

Memory Attributes

Fields in the LTB, GTB and cache tag control various
attributes of the memory access in the specified region of
memory. These include the control of cache consultation,
updating, allocation, prefetching, coherence, ordering, victim
selection, detail access, and cache prefetching.

Cache Control

The cache may be used in one of five ways, depending on
a three-bit cache control field (cc) in the LTB and GTB. The
cache control field may be set to one of seven states: NC, CD,
WT, WA, PF, SS, and LS:

read write read/write
State consult allocate update allocate victim prefetch
No Cache 0 No No No No No No
Cache Disable 1 Yes No Yes No No No
Write Through 2 Yes Yes Yes No No No
reserved 3
Write Allocate 4 Yes Yes Yes Yes No No
PreFetch 5 Yes Yes Yes Yes No Yes
SubStream 6 Yes Yes Yes Yes Yes No
LineStream 7 Yes Yes Yes Yes Yes Yes

The Zeus processor controls cc as an attribute in the LTB
and GTB, thus software may set this attribute for certain
address ranges and clear it for others. A three-bit field indi-
cates the choice of caching, according to the table above. The
maximum of the three-bit cache control field (cc) values of
the LTB and GTB indicates the choice of caching, according
to the table above.

No Cache

No Cache (NC) is an attribute that can be set on a LTB or
GTB translation region to indicate that the cache is to be not
to be consulted. No changes to the cache state result from
reads or writes with this attribute set, (except for accesses that
directly address the cache via memory-mapped region).

Cache Disable

Cache Disable (CD) is an attribute that canbe setona LTB
or GTB translation region to indicate that the cache is to be
consulted and updated for cache lines which are already
present, but no new cache lines or sub-blocks are to be allo-
cated when the cache does not already contain the addressed
memory contents.

The “Socket 7” bus also provides a mechanism for sup-
porting chip sets to decide on each access whether data is to be
cached, using the CACHE# and KEN# signals. Using these
signals, external hardware may cause a region selected as WT,
WA or PF to be treated as CD. This mechanism is only active
on the first such access to a memory region if caching is
enabled, as the cache may satisfy subsequent references with-
out a bus transaction.

Write Through

Write Through (WT) is an attribute thatcanbe setona LTB
or GTB translation region to indicate that the writes to the
cache must also immediately update backing memory. Reads
to addressed memory that is not present in the cache cause

US 9,229,713 B2

147

cache lines or sub-blocks to be allocated. Writes to addressed
memory that is not present in the cache does not modify cache
state.

The “Socket 7” bus also provides a mechanism for sup-
porting chip sets to decide on each access whether data is to be
written through, using the PWT and WB/WT# signals. Using
these signals, external hardware may cause a region selected
as WA or PF to be treated as WT. This mechanism is only
active on the first write to each region of memory; as on
subsequent references, if the cache line is in the Exclusive or
Modified state and writeback caching is enabled on the first
reference, no subsequent bus operation occurs, at least until
the cache line is flushed.

Write Allocate

Write allocate (WA) is an attribute that can be set ofa LTB
or GTB translation region to indicate that the processor is to
allocate a memory block to the cache when the data is not
previously present in the cache and the operation to be per-
formed is a store. Reads to addressed memory that is not
present in the cache cause cache lines or sub-blocks to be
allocated. For cacheable data, write allocate is generally the
preferred policy, as allocating the data to the cache reduces
further bus traffic for subsequent references (loads or stores)
or the data. Write allocate never occurs for data which is not
cached. A write allocate brings in the data immediately into
the Modified state.

Other “socket 7 processors have the ability to inhibit write
allocate to cached locations under certain conditions, related
by the address range. K6, for example, can inhibit write
allocate in the range of 15-16 Mbyte, or for all addresses
above a configurable limit with 4 Mbyte granularity. Pentium
has the ability to label address ranges over which write allo-
cate can be inhibited.

PreFetch

Prefetch (PF) is an attribute that canbe set ona LTB or GTB
translation region to indicate that increased prefetching is
appropriate for references in this region. Each program fetch,
load or store to a cache line that or does not already contain all
the sub-blocks causes a prefetch allocation of the remaining
sub-blocks. Cache misses cause allocation of the requested
sub-block and prefetch allocation of the remaining sub-
blocks. Prefetching does not necessarily fill in the entire
cache line, as prefetch memory references are performed at a
lower priority to other cache and memory reference traffic. A
limited number of prefetches (as low as one in the initial
implementation) can be queued; the older prefetch requests
are terminated as new ones are created.

In other respects, the PF attribute is handled in the manner
of the WA attribute. Prefetching is considered an implemen-
tation-dependent feature, and an implementation may choose
to implement region with the PF attribute exactly as with the
WA attribute.

Implementations may perform even more aggressive
prefetching in future versions. Data may be prefetched into
the cache in regions that are cacheable, as a result of program
fetches, loads or stores to nearby addresses. Prefetches may
extend beyond the cache line associated with the nearby
address. Prefetches shall not occur beyond the reach of the
GTB entry associated with the nearby address. Prefetching is
terminated if an attempted cache fill results in a bus response
that is not cacheable. Prefetches are implementation-depen-
dent behavior, and such behavior may vary as a result of other
memory references or other bus activity.

SubStream

SubStream (SS) is an attribute that caii be set on a LTB or
GTB translation region to indicate that references in this
region are to be selected as the next victim on a cache miss. In

10

15

20

25

30

35

40

45

50

55

60

65

148

particular, cache misses, which normally place the cache line
in the last-to-be-victim state, instead place the cache line in
the first-to-be-victim state, except relative to cache lines in the
I state.

In other respects the SS attribute is handled in the manner
of the WA attribute. SubStream is considered an implemen-
tation-dependent feature, and an implementation may choose
to implement region with the SS attribute exactly as with the
WA attribute.

The SubStream attribute is appropriate for regions which
are large data structures in which the processor is likely to
reference the memory data just once or a small number of
times, but for which the cache permits the data to be fetched
using burst transfers. By making it a priority for victimiza-
tion, these references are less likely to interfere with caching
of data for which the cache performs a longer-term storage
function.

LineStream

LineStream (L.S) is an attribute that can be set on a LTB or
GTB translation region to indicate that references in this
region are to be selected as the next victim on a cache miss,
and to enable prefetching. In particular, cache misses, which
normally place the cache line in the last-be-victim state,
instead place the cache line in the first-to-be-victim state,
except relative to cache lines in the I state.

In other respects, the LS attribute is handled in the manner
of the PF attribute. LineStream is considered an implemen-
tation-dependent feature, and an implementation may choose
to implement region with the SS attribute exactly as with the
PF or WA attributes.

Like the SubStream attribute, the LineStream attribute is
particularly appropriate for regions for which large data struc-
tures are used in sequential fashion. By prefetching the entire
cache line, memory traffic is performed as large sequential
bursts of at least 256 bytes, maximizing the available bus
utilization.

Cache Coherence

Cache coherency is maintained by using MESI protocols
for which each cache line (256 bytes) the cache data is kept in
one of four states: M, E, S, I:

State this Cache data other Cache data Memory data

Modified 3 Data is held No data is present The contents of
exclusively in this in other caches. main memory are
cache, now invalid.

Exclusive 2 Data is held No data is present Data is the same as
exclusively in this in other caches. the contents of
cache. main memory

Shared 1 Data is held in this ~ Data is possibly in Data is the same as
cache, and possibly other caches. the contents of
others. main memory.

Invalid 0 No data for this Data is possibly in Data is possibly

location is present other caches.

in the cache.

present in main
mermory.

The state is contained in the mesi field of the cache tag.

In addition, because the “Socket 7” bus performs block
transfers and cache coherency actions on triclet (32 byte)
blocks, each cache line also maintains 8 bits of triclet valid
(tv) state. Each bit of tv corresponds to a triclet sub-block of
the cache line bit 0 for bytes 0 .. . 31, bit 1 for bytes 32 ... 63,
bit 2 for bytes 64 . . . 95, etc. If the tv bit is zero (0), the
coherence state for that triclet is I, no matter what the value of
the mesi field. If the tv bit is one (1), the coherence state is
defined by the mesi field. If all the tv bits are cleared (0), the
mesi field must also be cleared, indicating an invalid cache
line.

US 9,229,713 B2

149

Cache coherency activity generally follows the protocols
defined by the “Socket 7” bus, as defined by Pentium and
K6-2 documentation. However, because the coherence state
of a cache line is represented in only 10 bits per 256 bytes
(1.25 bits per triclet), a few state transistions are defined
differently. The differences are a direct result of attempts to
set triclets within a cache line to different MES states that
cannot be represented. The data structure allows any triclet to
be changed to the I state, so state transitions in this direction
match the Pentium processor exactly.

On the Pentium processor, for a cache line in the M state, an
external bus Inquiry cycle that does not require invalidation
(INV=0) places the cache line n the S state. On the Zeus
processor, if no other triclet in the cache line is valid, the mesi
fieldis changedto S. If other triclets in the cache line are valid,
the mesi field is left unchanged and the tv bit for this triclet is
turned off, effectively changing it to the I state.

On the Pentium processor, for a cache line in the E state, an
external bus Inquiry cycle that does not require invalidation
(INV=0) places the cache line in the S state. On the Zeus
processor, the mesi field is changed to S. If other triclets in the
cache line are valid, the MESI state is effectively changed to
the S state for these other triclets.

On the Pentium processor, for a cache line in the S state, an
internal store operation causes a write-through cycle and a
transition to the E state. On the Zeus processor, the mesi field
is changed to E. Other triclets in the cache line are invalidated
by clearing the tv bits; the MESI state is effectively changed
to the I state for these other triclets.

When allocating data into the cache due to a store opera-
tion, data is brought immediately into the Modified state,
setting the mesi field to M. If the previous mesi field is S, other
triclets which are valid are invalidated by clearing the tv bits.
Ifthe previous mesi field is E, other triclets are kept valid and
therefore changed to the M state.

When allocating data into the cache due to aload operation,
data is brought into the Shared state, if another processor
retorts that the data is present in its cache or the mesi field is
already set to S, the Exclusive state, if no processor reports
that the data is present in its cache and the mesi field is
currently E or I, or the Modified state if the mesi field is
already set to M. The determination is performed by driving
PWT low and checking whether WB/WT# is sampled high; if
so the line is brought into the Exclusive state. (See page 202
(184) of the K6-2 documentation).

Strong Ordering

Strong ordering (so) is an attribute which permits certain
memory regions to be operated with strong ordering, in which
all memory operations are performed exactly in the order
specified by the program and others to be operated with weak
ordering, in which some memory operations may be per-
formed out of program order.

The Zeus processor controls strong ordering as an attribute
in the LTB nd GTB, thus software may set this attribute for
certain address ranges and clear it for others. A one bit field
indicates the choice of access ordering. A one (1) bit indicates
strong ordering, while a zero (0) bit indicates weak ordering.

With weak ordering, the memory system may retain store
operations in a store buffer indefinitely for later storage into
the memory system, or until a synchronization operation to
any address performed by the thread that issued the store
operation forces the store to occur. Load operations may be
performed in any order, subject to requirements that they be
performed logically subsequent to prior store operations to
the same address, and subsequent to prior synchronization
operations to any address. Under weak ordering it is permit-
ted to forward results from a retained store operation to a

10

15

20

25

30

35

40

45

50

55

60

65

150

future load operation to the same address. Operations are
considered to be to the same address when any bytes of the
operation are in common. Weak ordering is usually appropri-
ate for conventional memory regions, which are side-effect
free.

With strong ordering, the memory system must perform
load and store operations in the order specified. In particular,
strong-ordered load operations are performed in the order
specified, and all load operations (whether weak or strong)
must be delayed until all previous strong-ordered store opera-
tions have been performed, which can have a significant per-
formance impact. Strong ordering is often required for
memory-mapped /O regions, where store operations may
have a side-effect on the value returned by loads to other
addresses. Note that Zeus has memory-mapped /O, such as
the TB, for which the use of strong ordering is essential to
proper operation of the virtual memory system.

The EWBE# signal in “Socket 7 is of importance in main-
taining strong ordering. When a write is performed with the
signal inactive, no further writes to E or M state lines may
occur until the signal becomes active. Further details are
given in Pentium documentation (K6-2 docmentation may
not apply to this signal.)

Victim Selection

One bit of the cache tag, the vs bit, controls the selection of
which set of the four sets at a cache address should next be
chosen as a victim for cache line replacement. Victim selec-
trion (vs) is an attribute associated with LOC cache blocks.
No vs bits are present in the UTB or GTB.

There are two hexlets of tag information for a cache line,
and replacement of a set requires writing only one hexlet. To
update priority information for victim selection by writing
only one hexlet, information in each hexlet is combined by an
exclusive-or. It is the nature of the exclusive-or function that
altering either of the two hexlets can change the priority
information.

Full victim selection ordering for four sets

There are 4*3*2%1 =24 possible orderings of the four sets,
which can be completely encoded in as few as 5 bits: 2 bits to
indicate highest priority, 2 bits for second-highest priority, 1
bit for third-highest priority, and 0 bits for lowest priority.
Dividing this up per set and duplicating per hexlet with the
exclusive-or scheme above requires three bits per set, which
suggests simply keeping track of the three-highest priority
sets with 2 bits each, using 6 bits total and three bits per set.

Specifically, vs bits from the four sets are combined to
produce a 6-bit value:

vso <= (vs[3] || vs[2]) * (vs[1]]| vs[0])

The highest priority for replacement is setvsc, , second
highest priority is set vsc; ,, third highest priority is set
vscs ,,andlowest priority is vess ,"vse, ."vse, .
When the highest priority set is replaced, it becomes the new
lowest priority and the others are moved up, computing a new
vsc by:

vsc < vscs 4"vses 2" vsey o || vses

When replacing set vsc for a LineStream or SubStream
replacement, the priority for replacement is unchanged,
unless another set contains the invalid MESI state, computing
a new vsc by:

US 9,229,713 B2

151

vsc < mesi[vscs 4"vscy »"vsey o]=T) 7 vscs 4" vscs 2" vsep o || vses o
(mesi[vscs 4]=T) 7 vsey o || vses o:
(mesi[vscs 2]=T) 7 vses 4| vsey of| vses o:

vsc

Cache flushing and invalidations can cause cache lines to
be cleared out of sequential order. Flushing or invalidating a
cache line moves that set to highest priority. If that set is
already highest priority, the vsc is unchanged. If the set was
second or third highest or lowest priority, the vsc is changed
to move that set to highest priority, moving the others down.

vsc < ((fs=vsc) o or fs5=vsc3_5) ? vscs 4 : vscs) || (fs=vsc o ? vses
vsey o) || fs

When updating the hexlet containing vs[1] and vs[0], the
new values of vs [1] and vs [0] are:

vs[1] < vs[3] :vsc5__3
vs[0] <= vs[2] wvscs o

When updating the hexlet containing vs[3] and vs[2], the
new values of vs[3] and vs|2] are:

vs[3] < vs[1] :vsc5__3
vs[2] <= vs[0] vscs o

Software must initialize the vs bits to a legal, consistent
state. For example, to set the priority (highest to lowest) to (0,
1, 2, 3), vsc must be set to O0b100100. There are many legal
solutions that yield this vsc value, such as

vs[3] < 0, vs[2] <= 0, vs[1] < 4, vs[0] < 4.

Simplified victim selection ordering for four sets

However, the orderings are simplified in the first Zeus
implementation, to reduce the number of vs bits to one per set,
keeping a two bit vsc state value:

vse = (vs[3] [vs[2]) " (vs[1] | vs[0])

The highest priority for replacement is set vsc, second
highest priority is set vsc+1, third highest priority is set vsc+2,
and lowest priority is vsc+3. When the highest priority set is
replaced, itbecomes the new lowest priority and the others are

10

15

20

25

30

35

40

45

50

152

vsc < mesi[vsc+1]=) 2 vsc + 1 :
(mesi[vsc+2]=I) ? vsc + 2 :
(mesi[vsc+3]=I) ? vsc + 3 :

vse

Cache flushing and invalidations can cause cache sets to be
cleared out of sequential order. If the current highest priority
for replacement is a valid set, the flushed or invalidated set is
made highest priority for replacement.

vsc < (mesi[vsc]=I) ? vsc : fs

When updating the hexlet containing vs[1] and vs[0], the
new values of vs[1] and vs[0] are:

vs[1] < vs[3] :vscl
vs[0] <= vs[2] wvsc,

When updating the hexlet containing vs[3] and vs[2], the
new values of vs[3] and vs [2] are:

vs[3] < vs[1] :vscl
vs[2] <= vs[0] vscg

Software must initialize the vs bits, but any state is legal.
For example, to set the priority (highest to lowest) to (0, 1, 2,
3), vsc must be set to 0b00. There are many legal solutions
that yield this vsc value, such as vs[3]<0, vs[2]<0,
vs[1]<=0, vs[0]<0.

Full victim selection ordering for additional sets

To extend the full-victim-ordering scheme to eight sets,
3*%7=21 bits are needed, which divided among two tags is 11
bits per tag. This is somewhat generous, as the minimum
required is 8*7*6*5%4%*3%2%1=40320 orderings, which can
be represented in as few as 16 bits. Extending the full-victim-
ordering four-set scheme above to represent the first 4 priori-
ties in binary, but to use 2 bits for each of the next 3 priorities
requires 3+3+3+3+2+42+2=18 bits. Representing fewer dis-
tinct orderings can further reduce the number of bits used. As
an extreme example, using the simplified scheme above with
eight sets requires only 3 bits, which divided among two tags
is 2 bits per tag.

Victim selection without LOC tag bits

At extreme values of the niche limit register (nl in the range
121...124),the bitnormally used to hold the vs bit is usurped
for use as a physical address bit. Under these conditions, no
vsc value is maintained per cache line, instead a single, global
vsc value is used to select victims for cache replacement. In
this case, the cache consists of four lines, each with four sets.
On each replacement a new si valus is computed from:

moved up. Priority is given to sets with invalid MESI state, >
computing a new vsc by: gvic — gvsc+ 1
Si <= gvsC pay; o
vsc < mesi[vsc+1]=I) ? vsc + 1 :
(mesi[vsc+2]=I) ? vsc + 2 : 60 The algorithm above is designed to utilize all four sets on

(mesi[vsc+3]=I) ? vsc + 3 :
vsc+ 1

When replacing set vsc for a LineStream or SubStream
replacement, the priority for replacement is unchanged,
unless another set contains the invalid MESI state, computing
a new vsc by:

65

sequential access to memory.

Victim selection encoding LOC tag bits

At even more extreme values of the niche limit register (nl
in the range 125 . .. 127), not only is the bit normally used to
hold the vs bit is usurped for use as a physical address bit, but
there is a deficit of one or two physical address bits. In this
case, the number of sets can be reduced to encode physical

US 9,229,713 B2

153
address bits into the victim selection, allowing the choice of
set to indicate physical address bits 9 or bits 9 . . . 8. On each
replacement a new vsc valus is computed from:

gvsc < gvsc + 1
si < pag || (nl=127) ? pag : gvsc pa;g

The algorithm above is designed to utilize all four sets on
sequential access to memory.

Detail Access

Detail access is an attribute which can be set on a cache
block or translation region to indicate that software needs to
be consulted on each potential access, to determine whether
the access should proceed or not. Setting this attribute causes
an exception trap to occur, by which software can examine the
virtual address, by for example, locating data in a table, and if
indicated, causes the processor to continue execution. In con-
tinuing, ephemeral state is set upon returning to the re-execu-
tion of the instruction that prevents the exception trap from
recurring on this particular re-execution only. The ephemeral
state is cleared as soon as the instruction is either completed
or subject to another exception, so DetailAccess exceptions
can recur on a subsequent execution of the same instruction.
Alternatively, if the access is not to proceed, execution has
been trapped to software at this point, which can abort the
thread or take other corrective action.

The detail access attribute permits specification of access
parameters over memory region on arbitrary byte boundaries.
This is important for emulators, which must prevent store
access to code which has been translated, and for simulating
machines which have byte granularity on segment bound-
aries. The detail access attribute can also be applied to debug-
gers, which have the need to set breakpoints on byte-level
data, or which may use the feature to set code breakpoints on
instruction boundaries without altering the program code,
enabling breakpoints on code contained in ROM.

A one bit field indicates the choice of detail access. A one
(1) bit indicates detail access, while a zero (0) bit indicates no
detail access. Detail access is an attribute that can be set by the
LTB, the GTB, or a cache tag.

The table below indicates the proper status for all potential
values of the detail access bits in the LTB, GTB, and Tag:

LTB GTB Tag status

OK - normal
AccessDetailRequiredByTag
AccessDetailRequiredByGTB
OK - GTB inhibited by Tag
AccessDetailRequired ByLTB
OK - LTB inhibited by Tag
OK - LTB inhibited by GTB
AccessDetailRequiredByTag
GTBMiss
AccessDetailRequired ByLTB
Cache Miss
AccessDetailRequiredByGTB
AccessDetailRequired ByLTB
Cache Miss

_ O Ok~ OO
—_H O R OR OO

Miss
Miss

0 Miss
Miss
Miss
Miss

H_, OO, ORHRFRRFROOOO

— o -

The first eight rows show appropriate activities when all
three bits are available. The detail access attributes for the
LTB, GTB, and cache tag work together to define whether and
which kind of detail access exception trap occurs. Generally,
setting a single attribute bit causes an exception, while setting
two bits inhibits such exceptions. In this way, a detail access
exception can be narrowed down to cause an exception over a

10

15

20

25

30

35

40

45

50

55

60

65

154

specified region of memory: Software generally will set the
cache tag detail access bit only for regions in which the LTB
or GTB also has a detail access bit set. Because cache activity
may flush and refill cache lines implicity, it is not generally
useful to set the cache tag detail access bit alone, but if this
occurs, the AccessDetailRequiredByTag exception catches
such an attempt.

The next two rows show appropropriate activities on a
GTB miss. On a GTB miss, the detail access bit in the GTB is
not present. If the LTB indicates detail access and the GTB
misses, the AccessDetailRequiredByL'TB exception should
be indicated. If software continues from the AccessDetailRe-
quiredByL'TB exception and has not filled in the GTB, the
GTBMiss exception happens next. Since the GTBMiss exec-
tion is not a continuation exception, a re-execution after the
GTBMiss exception can cause a reoccurence of the Access-
DetailRequiredByLTB exception. Alternatively, if software
continues from the AccessDetailRequiredByL.TB exception
and has filled in the GTB, the AccessDetailRequiredByL.TB
exception is inhibited for that reference, no matter what the
status of the GTB and Tag detail bits, but the re-executed
instruction is still subject to the AccessDetailRequired-
ByGTB and AccessDetailRequiredByTag exceptions.

The last four rows show appropriate activities for a cache
miss. On a cache miss, the detail access bit in the tag is not
present. If the LTB or GTB indicates detail access and the
cache misses, the AccessDetailRequiredByL.TB or Access-
DetailReguiredByGTB exception should be indicated. If
software continues from these exceptions and has not filled in
the cache, a cache miss happens next. If software continues
from the AccessDetailReguiredByL’TB or AccessDetail-
ReguiredByGTB exception and has filled in the cache, the
previous exception is inhibited for that reference, no matter
what the status of the Tag detail bit, but is still subject to the
AccessDetailReguiredByTag exception. When the detail bit
must be created from a cache miss, the intial value filled in is
zero. Software may set the bit, thus turning oft AccessDetail-
Reguired exceptions per cache line. If the cache line is flushed
and refilled, the detail access bit in the cache tag is again reset
to zero, and another AccessDetailReguired exception occurs.

Settings of the niche limit parameter to values that require
use of the da bit in the LOC tag for retaining the physical
address usurp the capability to set the Tag detail access bit.
Under such conditions, the Tag detail access bit is effectively
always zero (0), so it cannot inhibit AccessDetailReguired-
ByLTB, inhibit AccessDetailReguiredByGTB, or cause
AccessDetailReguiredByTag.

The execution of a Zeus instruction has a reference to one
quadlet of instruction, which may be subject to the Detail Ac-
cess exceptions, and a reference to data, which may be
unaligned or wide. These unaligned or wide references may
cross GTB or cache boundaries, and thus involve multiple
separate reference that are combined together, each of which
may be subject to the Detail Access exception. There is suffi-
cient information in the DetailAccess exception handler to
process unaligned or wide references.

The implementation is free to indicate DetailAccess excep-
tions for unaligned and wide data references either in com-
bined form, or with each sub-reference separated. For
example, in an unaligned reference that crosses a GTB or
cache boundary, a DetailAccess exception may be indicated
for a portion of the reference. The exception may report the
virtual address and size of the complete reference, and upon
continuing, may inhibit reoccurrence of the DetailAccess
exception for any portion of the reference. Alternatively, it
may report the virtual address and size of only a reference
portion and inhibit reoccurrence of the Detail Access excep-

US 9,229,713 B2

155

tion for only that portion of the reference, subject to another
Detail Access exception occurring for the remaining portion
of the reference.

MICROARCHITECTURE

This section discusses details of the initial implementation
that are not generally visible to software and do not affect its
function, other than performance rates. The details in this
section are specific to the initial implementation of the Zeus
architecture; other implementations may be markedly difter-
ent without affecting software compatibility. Certain aspects
that may vary between implementations are described by the
value of architectural parameters in the ROM, so that soft-
ware may adjust itself to these parameters.

Overview

One embodiment of Zeus provides four threads of simul-
taneous instruction execution—each thread has distinct gen-
eral register file, program counter, and local TB storage. Each
thread has distinct address units that perform the A, L, S, B
classes of instructions, but share other aspects of the memory
system and share functional units that perform the more
resource-intensive G, X, E, and W classes of instructions.

Referring to FIG. 1, the microarchitecture of the initial
implementation is indicated by the diagram.

Referring to FIG. 1, four copies of an access unit are
shown, each with an access instruction fetch queue A-Queue,
coupledto an access general register file AR, each of which is,
in turn, coupled to two access functional units A. The access
units function independently for four simultaneous threads of
execution. These eight access functional units A produce
results for access general register files AR and addresses to a
shared memory system. The memory contents fetched from
the memory system are combined with execute instructions
not performed by the access unit and entered into the four
execute instruction queues E-Queue. Instructions and
memory data from the E-queue are presented to execution
general register files, which fetch execution general register
file source operands. The instructions are coupled to the
execution unit by arbitration unit Arbitration, that selects
which instructions from the four threads are to be routed to the
available execution units E, X, G, and T. The execution gen-
eral register file source operands ER are coupled to the execu-
tion units using the source operand buses and to the execution
units using the source operand buses. The function unit result
operands from execution units are coupled to the execution
general register file using the result bus. The function units
result operands from the execution units are coupled to the
execution general register file using the result bus.

Instruction Scheduling

The detailed pipeline organization for Zeus has a signifi-
cant influence on instruction scheduling. Here we elaborate
some general rules for effective scheduling by a compiler.
Specific information on numbers of functional units, func-
tional unit parallelism and latency is quite implementation-
dependent: values indicated here are valid for Zeus’s first
implementation.

Separate Addressing from Execution

Zeus has separate function units to perform addressing
operations (A, L, S, B instructions) from execution operations
(G, X, E, W instructions). When possible, Zeus will excute all
the addressing operations of an instruction stream, deferring
execution of the execution operations until dependent load
instructions are completed. Thus, the latency of the memory
system is hidden, so long as addressing operations themselves
do not need to wait for memory operands or results from the
execution operations.

10

15

20

25

30

35

40

45

50

55

60

65

156

Software Pipeline

For best performance, instructions should be scheduled so
that previous dependent operations can be completed at the
time of issue. When this is not possible, the processor inserts
sufficient empty cycles to perform the instructions as if per-
formed one after the other—explicit no-operation instruc-
tions are not required.

Multiple Issue

Zeus can issue up to two addressing operations and up to
two execution operations per cycle per thread. Considering
functional unit parallelism, described below, as many of four
instruction issues per cycle are possible per thread.

Functional Unit parallelism

Zeus has separate function units for several classes of
execution operations. An A unit performs scalar add, subtract,
boolean, and shift-add operations for addressing and branch
calculations. The remaining functional units are execution
resources, which perform operations subsequent to memory
loads and which operate on values in a parallel, partitioned
form. A G unit performs add, subtract, boolean, and shift-add
operations. An X unit performs general shift operations. AnE
unit performs multiply and floating-point operations. A T unit
performs table-look-up operations.

Each instruction uses one or more of these units, according
to the table below.

Instruction A G X E T
Al X
B X
L X
S X
G X
X X
E X
W.TRANSLATE X X
W.MULMAT X X
W.SWITCH X X

Scheduling Latency

The latency of each functional unit depends on what opera-
tion is performed in the unit, and where the result is used. The
aggressive nature of the pipeline makes it difficult to charac-
terize the latency of each operation with a single number.

The latency figures below indicate the number of cycles
between the issue of the predecessor instruction (the last
instruction to produce a general register result) and the issue
of the successor instruction.

Because the addressing unit is decoupled from the execu-
tion unit, the latency of load operations is generally hidden,
unless the result of a load instruction or execution unit opera-
tion must be returned to the addressing unit. For each cycle in
which a load result or address unit result is not available to a
dependent execution unit instruction, the E-queue accepts the
dependent instructions for later execution, thus increasing the
decoupling.

Store instructions must be able to compute the address to
which the data is to be stored in the addressing unit, but the
data will not be irrevocably stored until the data is available
and it is valid to retire the store instruction. However, under
certain conditions, data may be forwarded from a store
instruction to subsequent load instructions, once the data is
available.

When the result of a load instruction or execution unit
operation is returned to the addressing unit to perform a
dependent operation, the full latency that was avoided from
decoupling is now incurred.

US 9,229,713 B2

157

The latency of each of these units, for the initial Zeus
implementation is indicated below:

Unit instruction Latency rules

A 1 cycle to A unit, Latency is 0 to G, X, E, T units,
as these operations are buffered in the E-queue
until the address unit result is available.

L Address operands must be ready in order to issue.
When cache hits or niche access performed,
latency is 2-3 cycles to A unit, Latency is
extended when cache misses or is delayed.
Latency is 0 to 0, X, E, T units, as these
operations are buffered in the E-queue until the
load result is available.

S Address operands must be ready in order to issue.
Store occurs when data is ready and instruction
may be retired, but data may be forwarded as
soon
as it is ready.

B Conditional branch operands may be provided

from the A unit (64-bit values), or the G unit

(128-bit values). 4 cycles for mispredicted branch

Address operand must be ready to issue,

1 cycle

1 cycle for data operands, 2 cycles for shift

amount or control operand

4 cycles

1 cycle

w
G G
X X, W.SWITCH

E E, WMULMAT
T W.TRANSLATE

Pipeline Organization

Zeus performs all instructions as if executed one-by-one,
in-order, with precise options always available. Conse-
quently, code that ignores the subsequent discussion of Zeus
pipeline implementations will still perform correctly. How-
ever, the highest performance of the Zeus processor is
achieved only by matching the ordering of instructions to the
characteristics of the pipeline. In the following discussion, the
general characteristics of all Zeus implementations precede
discussion of specific choices for specific implementations.

Classical Pipeline Structures

Pipelining in general refers to hardwire structures that
overlap various stages of execution of a series of instructions
so that the time required to perform the series of instructions
is less than the sum of the times required to perform each of
the instructions separately. Additionally, pipelines carry to
connotation ofa collection of hardware structures which have
a simple ordering and where each structure performs a spe-
cialized function.

The diagram below shows the timing of what has become
a canonical scalar pipeline structure for a simple RISC pro-
cessor, with time on the horizontal axis increasing to the right,
and successive instructions on the vertical axis going down-
ward. The stages I, R, E, M, and W refer to units which
perform instruction fetch, general register file fetch, execu-
tion, data memory fetch, and general register file write. The
stages are aligned so that the result of the execution of an
instruction may be used as the source of the execution of an
immediately following instruction, as seen by the fact that the
end of an E stage (bold in line 1) lines up with the beginning
of'the E stage (bold in line 2) immediately below. Also, it can
be seen that the result of a load operation executing in stages
E and M (bold in line 3) is not available in the immediately
following instruction (line 4), but may be used two cycles
later (line 5); this is the cause of the load delay slot seen on
some RISC processors.

10

25

30

40

45

50

158
1L I [R[E[|[M[W
2 I [R[E[M][|W
3 I |[R|E|M|W
4 I | R|E|M|W
5 IR E[M]W]

Inthe diagrams below, we simplify the diagrams somewhat
by eliminating the pipe stages for instruction fetch, general
register file fetch, and general register file write, which can be
understood to precede and follow the portions of the pipelines
diagrammed. The diagram above is shown again in this new
format, showing that the scalar pipeline has very little overlap
of the actual execution of instructions.

[E

wlz

] e

L N P N
[es]

E M

A superscalar pipeline is one capable of simultaneously
issuing two or more instructions which are independent, in
that they can be executed in either order and separately, pro-
ducing the same result as if they were executed serially. The
diagram below shows a two-way superscalar processor,
where one instruction may be a general register-to-general
register operation (using stage E) and the other may be a
general register-to-general register operation (using stage A)
or a memory load or store (using stages A and M).

1] E

2] A | M

3 E

4 A M

5 E

6 A | M

Superscalar Pipeline

A superpipelined pipeline is one capable is issuing simple
instructions frequently enough that the result of a simple
instruction must be independent of the immediately follow-
ing one or more instructions. The diagram below shows a
two-cycle superpipelined implementation:

Inthe diagrams below, pipeline stages are labelled with the
type of instruction that may be performed by that stage. The
posititon of the stage further identifies the function of that
stage, as for example a load operation may require several L.
stages to complete the instruction.

Superstring Pipeline

Zeus architecture provides for implementations designed
to fetch and execute several instructions in each clock cycle.
For a particular ordering of instruction types, one instruction

US 9,229,713 B2

159

of each type may be issued in a single clock cycle. The
ordering required is A, L, E, S, B; in other words, a general
register-to-general register address calculation, a memory
load, a general register-to-general register data calculation, a
memory store, and a branch. Because of the organization of
the pipeline, each of these instructions may be serially depen-
dent. Instructions of type E include the fixed-point execute-
phase instructions as well as floating-point and digital signal
processing instructions. We call this form of pipeline organi-
zation “superstring,” (readers with a background in theoreti-
cal physics may have seen this term in an other, unrelated,
context) because of the ability to issue a string of dependent
instructions in a single clock cycle, as distinguished from
superscalar or superpipelined organizations, which can only
issue sets of independent instructions.

These instructions take from one to four cycles of latency
to execute, and a branch prediction mechanism is used to keep
the pipeline filled. The diagram below shows a box for the
interval between issue of each instruction and the completion.
Bold letters mark the critical latency paths of the instructions,
that is, the periods between the required availability of the
source general registers and the earliest availability of the
result general registers. The A-L critical latency path is a
special case, in which the result of the A instruction may be
used as the base general register of the L instruction without
penalty. E instructions may require additional cycles of
latency for certain operations, such as fixed-point multiply
and divide, floating-point and digital signal processing opera-
tions.

1 A

2 L L

3 E E E

4 S S S S

5 B

6 A

7 L L

8 E E E

9 S S S S
10 B
11 A
12 L L
13 E E E
14 S S S S
15 B

Superspring Pipeline

Zeus architecture provides an additional refinement to the
organization defined above, in which the time permitted by
the pipeline to service load operations may be flexibly
extended. Thus, the front of the pipeline, in which A, [and B
type instructions are handled, is decoupled from the back of
the pipeline, in which E, and S type instructions are handled.
This decoupling occurs at the point at which the data cache
and its backing memory is referenced; similarly, a FIFO that
is filled by the instruction fetch unit decouples instruction
cache references from the front of the pipeline shown above.
The depth of the FIFO structures is implementation-depen-
dent, i.e. not fixed by the architecture.

The separation of access unit operations from execution
unit operations has been called “decoupled access from
execution” (Smith, James E.). FIG. 101 indicates why we call
his pipeline organization feature “superspring,” an extension
of our superstring organization.

10

15

20

30

35

40

45

50

55

60

65

160

With the super-spring organization, the latency of load
instructions can be hidden, as execute instructions are
deferred until the results of the load are available. Neverthe-
less, the execution unit still processes instructions in normal
order, and provides precise exceptions.

1 A

2 L L

3 E E — E

4 S S e S S

5 B

6 A

7 L L

8 E E e

9 S S e S S
10 B
11 A
12 L L
13 E E —_— E
14 S S —_— S S
15 B

Superthread Pipeline

This technique is not employed in the initial Zeus imple-
mentation, though it was present in an earlier prototype
implementation.

A difficulty of superpipelining is that dependent operations
must be separated by the latency of the pipeline, and for
highly pipelined machines, the latency of simple operations
can be quite significant. The Zeus “superthread” pipeline
provides for very highly pipelined implementations by alter-
nating execution of two or more independent threads. In this
context, a thread is the state required to maintain an indepen-
dent execution; the architectural state required is that of the
general register file contents, program counter, privilege
level, local TB, and when required, exception status. Ensur-
ing that only one thread may handle an exception at one time
may minimize the latter state, exception status. In order to
ensure that all threads make reasonable forward progress,
several of the machine resources must be scheduled fairly.

An example of a resource that is critical that it be fairly
shared is the data memory/cache subsystem. In a prototype
implementation, Zeus is able to perform a load operation only
on every second cycle, and a store operation only on every
fourth cycle. Zeus schedules these fixed timing resources
fairly by using a round-robin schedule for a number of threads
that is relatively prime to the resource reuse rates. For this
implementation, five simultaneous threads of execution
ensure that resources which may be used every two or four
cycles are fairly shared by allowing the instructions which use
those resources to be issued only on every second or fourth
issue slot for that thread. Three or seven simultaneous threads
of execution (any relatively prime number) would also have
the same property.

In the diagram below, the thread number which issues an
instruction is indicated on each clock cycle, and below it, a list
of'which functional units may be used by that instruction. The
diagram repeats every 20 cycles, so cycle 20 is similarto cycle
0, cycle 21 is similar to cycle 1, etc. This schedule ensures that
no resource conflict occur between threads for these
resources. Thread 0 may issuean E, L, S or B on cycle 0, but
on its next opportunity, cycle 5, may only issue E or B, and on
cycle 10 may issue E, L or B, and on cycle 15, may issue
E or B.

US 9,229,713 B2

cycle
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
thread

=
—
[N
w
N
=
—
[N
w
N
=
—
[N
w
N
=

E E E E E E E E E E E E E E E E
L L L L L L L L
S S S S

B B B B B B B B B B B B B B B B

W w o

162
17 18 19
2 3 4
E E E
L
B B B

When seen from the perspective of an individual thread, the
resource use diagram looks similar to that of the collection.

varying degrees among the threads are also buffered for later
execution. The execution units then perform operations from

Thus an individual thread may use the load unit every two 15 all active threads using functional data path units that are

instructions, and the store unit every four instructions. shared.

cycle

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 85 90 95
thread

o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E EEEEZETEETETETETETETETETETETEE E

L L L L L L L L L L

S S S S S

B BB BBBBBIBIBIBIBIBIBIBBB B B B

A Zeus Superthread pipeline, with 5 simultaneous threads
of execution, permits simple operations, such as general reg-
ister-to-general register add (G.ADD), to take 5 cycles to
complete, allowing for an extremely deeply pipelined imple-
mentation.

Simultaneous Multithreading

Simultaneous Multithreading is another form of multi-
threaded processor, where the threads are simultaneously
performed and compete for access to shared functional units.
In designs employing simultaneous multithreading, instruc-
tion issue for each thread must be modified to incorporate
arbitration between threads as they compete for access to
shared functional units. Simultaneous multithreaded pipe-
lines enhance the utilization of data path units by allowing
instructions to be issued from one of several execution threads
to each functional unit (Eggers, Susan, University of Wash-
ington).

The intial Zeus implementation performs simultaneous
multithreading among 4 threads. Each of the 4 threads share
acommon memory system, a common T unit. Pairs of threads
share two G units, one X unit, and one E unit. Each thread
individually has two A units. A fair allocation scheme bal-
ances access to the shared resources by the four threads.

In Zeus, simultaneous multithreading is combined with the
“SuperString” pipeline in a unique way. Compared to con-
ventional pipelines, prior simultaneous multithreading
designs used an additional pipeline cycle before instructions
could be issued to functional units, the additional cycle
needed to determine which threads should be permitted to
issue instructions. Consequently, relative to conventional
pipelines, this design had additional delay, including depen-
dent branch delay.

Zeus contains individual access data path units, with asso-
ciated general register files, for each execution thread. These
access units produce addresses, which are aggregated
together to a common memory unit, which fetches all the
addresses and places the memory contents in one or more
buffers. Instructions for execution units, which are shared to

30

35

40

45

55

60

65

For instructions performed by the execution units, the extra
cycle required for prior simultaneous multithreading designs
is overlapped with the memory data access time from
decoupled access from execution cycles, so that no additional
delay is incurred by the execution functional units for sched-
uling resources. For instructions performed by the access
units, by employing individual access units for each thread
the additional cycle for scheduling shared resources is also
eliminated.

This is a favorable tradeoff because, while threads do not
share the access functional units, these units are relatively
small compared to the execution functional units, which are
shared by threads.

With regard to the sharing of execution units, the Zeus
implementation employs several different classes of func-
tional units for the execution unit, with varying cost, utiliza-
tion, and performance. In particular, the G units, which per-
form simple addition and bitwise operations is relatively
inexpensive (in area and power) compared to the other units,
and its utilization is relatively high. Consequently, the design
employs four such units, where each unit can be shared
between two threads. The X unit, which performs a broad
class of data switching functions is more expensive and less
used, so two units are provided that are each shared among
two threads. The T unit, which performs the Wide Translate
instruction, is expensive and utilization is low, so the single
unit is shared among all four threads. The E unit, which
performs the class of Ensemble instructions, is very expen-
sive in area and power compared to the other functional units,
but utilization is relatively high, so we provide two such units,
each unit shared by two threads.

Brancly/fetch Prediction

Zeus does not have delayed branch instructions, and so
relies upon branch or fetch prediction to keep the pipeline full
around unconditional and conditional branch instructions. In
the simplest form of branch prediction, as in Zeus’s first
implementation, a taken conditional backward (toward a
lower address) branch predicts that a future execution of the

US 9,229,713 B2

163

same branch will be taken. More elaborate prediction may
cache the source and target addresses of multiple branches,
both conditional and unconditional, and both forward and
reverse.

The hardware prediction mechanism is tuned for optimiz-
ing conditional branches that close loops or express frequent
alternatives, and will generally require substantially more
cycles when executing conditional branches whose outcome
is not predominately taken or not-taken. For such cases of
unpredictable conditional results, the use of code that avoids
conditional branches in favor of the use of compare-set and
multiplex instructions may result in greater performance.

Under some conditions, the above technique may not be
applicable, for example if the conditional branch “guards”
code which cannot be performed when the branch is taken.
This may occur, for example, when a conditional branch tests
for a valid (non-zero) pointer and the conditional code per-
forms a load or store using the pointer. In these cases, the
conditional branch has a small positive offset, but is unpre-
dictable. A Zeus pipeline may handle this case as if the branch
is always predicted to be not taken, with the recovery of a
misprediction causing cancellation of the instructions which
have already been issued but not completed which would be
skipped over by the taken conditional branch. This “condi-
tional-skip” optimization is performed by the initial Zeus
implementation and requires no specific architectural feature
to access or implement.

A Zeus pipeline may also perform “branch-return” optimi-
zation, in which a branch-link instruction saves a branch
target address that is used to predict the target of the next
returning branch instruction. This optimization may be
implemented with a depth of one (only one return address
kept), or as a stack of finite depth, where a branch and link
pushes onto the stack, and a branch-register pops from the
stack. This optimization can eliminate the misprediction cost
of simple procedure calls, as the calling branch is susceptible
to hardware prediction, and the returning branch is predict-
able by the branch-return optimization. Like the conditional-
skip optimization described above, this feature is performed
by the initial Zeus implementation and requires no specific
architectural feature to access or implement.

Zeus implements two related instructions that can elimi-
nate or reduce branch delays for conditional loops, condi-
tional branches, and computed branches. The “branch-hint”
instruction has no effect on architectural state, but informs the
instruction fetch unit of a potential future branch instruction,
giving the addresses of both the branch instruction and of the
branch target. The two forms of the instruction specity the
branch instruction address relative to the current address as an
immediate field, and one form (branch-hint-immediate)
specifies the branch target address relative to the current
address as an immediate field, and the other (branch-hint)
specifies the branch target address from a general register.
The branch-hint-immediate instruction is generally used to
give advance notice to the instruction fetch unit of a branch-
conditional instruction, so that instructions at the target of the
branch can be fetched in advance of the branch-conditional
instruction reaching the execution pipeline. Placing the
branch hint as early as possible, and at a point where the extra
instruction will not reduce the execution rate optimizes per-
formance. In other words, an optimizing compiler should
insert the branch-hint instruction as early as, possible in the
basic block where the parcel will contain at most one other
“front-end” instruction.

Additional Load and Execute Resources

Studies of the dynamic distribution of Zeus instructions on
various benchmark suites indicate that the most frequently-

10

15

20

25

30

35

40

45

50

55

60

65

164

issued instruction classes are load instructions and execute
instructions. In a high-performance Zeus implementation, it
is advantageous to consider execution pipelines in which the
ability to target the machine resources toward issuing load
and execute instructions is increased.

One of the means to increase the ability to issue execute-
class instructions is to provide the means to issue two execute
instructions in a single-issue string. The execution unit actu-
ally requires several distinct resources, so by partitioning
these resources, the issue capability can be increased without
increasing the number of functional units, other than the
increased general register file read and write ports.

The partitioning in the initial implementation places all
instructions that involve shifting and shuffling in one execu-
tion unit, and all instructions that involve multiplication,
including fixed-point and floating-point multiply and add in
another unit. Resources used for implementing add, subtract,
and bitwise logical operations are duplicated, being modestin
size compared to the shift and multiply units, or shared
between the two units, as the operations have low-enough
latency that two operations might be pipelined within a single
issue cycle. These instructions must generally be indepen-
dent, except perhaps that two simple add, subtract, or bitwise
logical instructions may be performed dependently, if the
resources for executing simple instructions are shared
between the execution units.

One of the means to increase the ability to issue load-class
instructions is to provide the means to issue two load instruc-
tions in a single-issue string. This would generally increase
the resources required of the data fetch unit and the data
cache, buta compensating solution is to steal the resources for
the store instruction to execute the second load instruction.
Thus, a single-issue string can then contain either two load
instructions, or one load instruction and one store instruction,
which uses the same general register read ports and address
computation resources as the basic S-instruction string. This
capability also may be employed to provide support for
unaligned load and store instructions, where a single-issue
string may contain as an alternative a single unaligned load or
store instruction which uses the resources of the two load-
class units in concert to accomplish the unaligned memory
operation.

Result Forwarding

When temporally adjacent instructions are executed by
separate resources, the results of the first instruction must
generally be forwarded directly to the resource used to
execute the second instruction, where the result replaces a
value which may have been fetched from a general register
file. Such forwarding paths use significant resources. A Zeus
implementation must generally provide forwarding resources
so that dependencies from earlier instructions within a string
are immediately forwarded to later instructions, except
between a first and second execution instruction as described
above. In addition, when forwarding results from the execu-
tion units back to the data fetch unit, additional delay may be
incurred.

Overall Pipeline

Starting with the thread program counter, instructions are
prefetched into the program microcache (PMC or A-queue),
read from the program microcache (PMC), aligned into
bundles of up to four instructions, and decisions are made to
issue up to four instructions. Two initial instructions are sent
to the address unit, and two additional instructions are sent to
the execution unit queue (E-queue, or spring). The addresses
from the address units are fetched from the memory system.
Results from the address units or from the memory system are
also placed into the E-queue. Instructions and data are read

US 9,229,713 B2

165

from the E-queue and issued to the execution units (G, X, E,
T). Results from the address units and execution units are
stored into memory.

The following sections describe the major units for the
pipeline described above.

Program Microcache

The initial implementation includes a program microcache
(PMC or A-queue or AQ) which holds only program code for
each thread. The program microcache is flushed by reset, or
by executing a B.BARRIER instruction. The program micro-
cache is always clean, and is not snooped by writes or other-
wise kept coherent, except by flushing as indicated above.
The microcache is not altered by writing to the LTB or GTB,
and software must execute a B.BARRIER instruction before
expecting the new contents of the LTB or GTB to affect
determination of PMC hit or miss status on program fetches.

In the initial implementation, the program microcache
holds simple loop code. The microcache holds two separately
addressed cache lines: 512 bytes or 128 instructions.
Branches or execution beyond this region cause the micro-
cache to be flushed and refilled at the new address, provided
that the addresses are executable by the current thread. The
program microcache uses the B.HINT and B.HINT.I to accel-
erate fetching of program code when possible. The program
microcache generally functions as a prefetch buffer, except
that short forward or backward branches within the region
covered maintain the contents of the microcache.

Program fetches into the microcache are requested on any
cycle in which less than two load/store addresses are gener-
ated by the address unit, unless the microcache is already full.
System arbitration logic gives program fetches lower priority
than load/store references when first presented, then equal
priority if the fetch fails arbitration a certain number of times.
The delay until program fetches have equal priority should be
based on the expected time the program fetch data will be
executed; it may be as small as a single cycle, or greater for
fetches which are far ahead of the execution point.

Program Counter Queue

The depth of the processor pipeline, and the width of pro-
gram counter addresses (64 bits) makes storage of the pro-
gram counter for each instruction expensive. To reduce the
cost of this storage, the program counter for each parcel is
represented by an up to 4-bit pcqid and an 6-bit pcqoff. The
current privilege level is also retained as a 2-bit pcqpl. The
size of the Program Counter Queue (PCQ) is implementation-
dependent: for the first implementation, 4 entries per thread
are used (and 2 bits per pcqid are used).

9 87 21 0

| peqid | | peqpl |
2 6 2

pe: peqoff

The meaning of the fields are given by the following table:

name size meaning

peqid 2 Identi PC-queue ent used for this parcel
peqoff 6 Offset from PC-queue for this parcel
pegpl 2 Privilege level for this parcel

A new entry is allocated on each taken branch and when the
pcqoft field overflows. The pcqoff field expresses an offset
from the stored program counter, shifted by two bits. An entry
is deallocated when the last instruction using that pcqid is

10

15

30

40

45

50

55

60

166

retired. If there is need to allocate a new entry and one is not
available, instruction issue is halted until an entry is available.
Consequently, the number of entries should reflect the depth
of the pipeline compared to the number of parcels between
taken branches. For an inner loop, a second taken branch need
only reset the pcqoff value, leaving the pcqid alone, so that an
inner loop of fewer than 256 instructions need only use one
entry.

It is possible to integrate handling of the PCQ with the
PMC, using the “front” two entries as program code address
tags for the PMC. As a new cache line is brought into the
PMC, a new pcqid is allocated for it, in round-robin fashion,
and the “back” two entries have already been issued and now
require only handling as the PCQ. The pcqoff field may be
limited to 6 bits to match the PMC structure.

Instruction Fetch

Up to four instructions, forming a parcel, are fetched from
the program microcache (PMC) on each cycle. The four
instructions are examined for their ability to be issued; any
unissued instruction is the first instruction of the parcel on the
next cycle.

The diagram below illustrates, in the little-endian ordering
that is required of instructions, the four-instruction parcel.

128 9695
fourth third
32 32 32 32

6463 3231 0

second first

Only the first two instructions of the parcel are candidates
forissue to the A functional units. The A units may issue zero,
the first one, or the first two instructions from the parcel. Ifthe
first two instructions are dependent, only the first will be
issued. If either of the first two instructions are an unaligned
load, unaligned store or branch gateway instruction, both A
units will be employed to perform this instruction, so the
second instruction will not be issued the the A unit. If either of
the first two instructions are W instructions, the address unit
is used to check availability of the memory operand or to
begin fetching the memory operand if missed in the wide
microcache. If either of the first two instructions require gen-
eral registers which are absent from the AR (see below), they
are not issued until the value of the general registers are
copied from the ER to the AR.

The diagram below illustrates the possible configurations
in which zero, one or two instructions are issued to the two A
functional units. The matching pattern in the list below con-
trols the number and selection of instructions that are candi-
dates for issue. As the pattern illustrates, all A, B, L, or S class
instructions must preceed the G, E, X, or W class instructions
in order to be simultaneously issued.

128 9695 6463 3231 0

fourth third second first
GEX
GEX ABLS
ABLSGEX w
ABLSW ABLS
w w
32 32 32 32

Up to two remaining instructions of the parcel, after the 0-2
issued to the A units, but including any W instructions, are

US 9,229,713 B2

167

candidates for issue to the execution unit. Thus, any two
consecutive instructions or any one of the first three instruc-
tions of the four instruction parcel may be issued to the
execution unit.

The diagram below illustrates the possible configurations
in which zero, one or two instructions are issued to the two
execution functional units. The largest (last) pattern in the list
that matches the parcel controls the number and selection of
instructions that are candidates for issue.

128 9695 6463 3231 0

fourth third second first T

ABLS GEXW 1]

GEXW GEXW 2]

ABLS GEXW ABLS 1]

GEXW GEXW ABLS o]

ABLS GEXW ABLS ABLS 1]
GEXW GEXW ABLS ABLS B
32 32 32 32 o

For several of these patterns, a W instruction may be
issued, but may not be checked by the address unit, as it
appears in the third or fourth instruction of the parcel or
follows a G, E, or X instruction. For such cases, if the address
general register is not recognized as referencing a wide
microcache entry (if, for example, the general register has
been changed from a previous usage), the instruction will fail
to issue and will be checked on the following cycle.

For execution unit instructions (G, E, X, W) the unavail-
ability of source general registers do not prevent their issue, as
this aspect will be examined as the instructions are fetched
from the E-queue. If any required general registers are absent
from the ER (execution unit general register file), pseudo
operations are inserted into the E-queue to copy values from
the AR to the ER. The status of result operand general regis-
ters of execution unit instructions are set to E, marking their
absence from the AR.

Dual general register files

Eachthread has two general register files, one that is 64 bits
wide and associated with the address units (AR), and one that
is 128 bits wide and associated with the execution units (ER).
A general register may be present in AR or ER, or both. Since
the AR is 64 bits, the upper 64 bits of these general registers
are assumed to be the sign extension of the lower 64 bits.
Status bits associated with each general register keep track of
the presence of the value in AR and in ER, and the complete-
ness of the value in AR.

Status AR ER meaning
0 A present, complete absent AR only
1 EA present, modulo present AR = ERS30 ER128-64
ERg*
2 AE present, complete present AR =ER
3 E absent present ER only

General register source operands are fetched from AR or
ER, depending on the class of the instruction and the operand.
A and B instruction operands are generally fetched from AR,
except that general register operands with status of E or EA
for A.SET.cond or B.cond instructions are fetched from ER,
as the comparison is performed in a G execution unit. (If both
general register operands have status of A or AE, the com-
parison is performed in an A address unit.) L. instruction

10

15

20

25

35

40

45

50

55

60

65

168

operands and S instruction address operands are fetched from
AR, 8 bit to 64 bit S instruction rd general register operand is
fetched from AR if the status is A, EA, or AE, or fetched from
ER is the status is E. 128 bit instruction rd general register
operand is fetched from AR if the status is A or AE, or fetched
from ER if the status is EA or E, G, E, X, and W instructions
read source operands from ER, except that W instruction rc
operands are fetched from AR.

General register results from performing instructions may
be written to just one or both of the general register files. A or
B instructions write results to the address unit general register
file (AR), L instructions write results to both general register
files (AR and ER), G, E, X, and W instructions write results to
the execution units general register file (ER). When a result is
written to only one general register file, it is absent (not
present) in the other general register file. This has the benefi-
cial effect of reducing the average number of writes that are
performed to the general register files.

old register reads register writes new
Class status AR ER AR ER status
A X X A
A.cond AAE X X A
A.cond EEA X X A
B X X A
B.cond AAE X X A
B.cond EEA X X A
L re, rb X X AE, EA
S864 AEAAE X rd
S 8-64 E re, rb rd
S 128 AAE X rd
S 128 EAE re, rb rd
G X X E
E X X E
X X X E
W rc X X E

At the time of issue to the address unit, each of the source
general registers that will be fetched from the address unit
general register file (or associated bypass logic) must be
present and available, and if a 128-bit operand, complete.
Each of the source general registers that will be fetched from
the execution unit general register file must be present.

When a general register value is absent, the value is copied
from the other general register file. For copying from the ER
to the AR, values are read from the ER onto the KillerBus as
if performing a store operation and written to the AR. When
the value is present in the AR, instruction issue is resumed.
For copying from the AR to the ER, the value is read from the
AR and stuffed into the EQ as if performing a load, inserting
a pseudo-operation into the EQ.

Values that are about to be written to a general register file
are bypassed to the source operand data ports, so values that
are about to be retired can be considered available for use as
sources.

Execution Queue

The execution queue (E-queue or EQ) retains issued execu-
tion unit instructions and general register file values, permit-
ting the address unit to continue performing operations while
the execution unit is waiting for memory operands. The
address unit places values into the rear of the queue, and the
execution unit removes entries from the front of the queue,
while the memory unit inserts values into allocated spaces in
the queue as load operations are completed (possibly out of
order).

The format of an EQ entry is wide enough to contain two
128-bit load results, two 6-bit destination general registers

US 9,229,713 B2

169
these were loaded to, two one-bit flags that indicate that the
results have been filled in, and two 31-bit back-end instruc-
tions (G, X, E, W)
Each EQ entry consists of 347 bits of information.

347336335328327321320 288287 256255 128127 0
[pe]et]eo] 3 |2 [a1 | w0
12 8 8 32 32 128 128
7 6 5 0
c0: [[vo] 1d0 |
1 1 6
7 6 5 0
cl: [1 [+v1] rdl |
1 1 6
31 30 0
i2: |V2| iq2 |
1 31
31 30 0
i3: |V3| iq3 |
1 31
32 3029 27
pe: | peqid | peqoff |
4 8

The meaning of the fields are given by the following table:

name size meaning

do 128 data from instruction 0 of parcel

d1 128 data from instruction 1 of parcel

rd0 6 target general register from instruction 0
rdl 6 target general register from instruction 1
fo 1 filled instruction 0

f1 1 filled instruction 1

v0 1 valid instruction 0

vl 1 valid instruction 1

v2 1 valid instruction 2

v3 1 valid instruction 2

iq2 31 low-order 31 bits of GXEW instruction 2
iq3 31 low-order 31 bits of GXEW instruction 2
peqid 4 Identify PC-queue entry used for this parcel
peqoff 8 Offset from PC-queue for this parcel

In parsing a four-instruction parcel, values that the address
unit loads from memory or that are copied from the address
unit general register file to the execution unit are placed into
the d0 and d1 fields. The latter constraint minimizes the
number of values copied from address to execution via the
FIFO, though in some cases extra delay is required when too
many general registers are to copies into the EQ. For cycles in
which more d0/d1 slots are available, this facility can be used
to copy general registers that have A (address-unit only) sta-
tus into the EQ, thus permitting more room in the EQ when
otherwise more than two general registers would require
copying.

Address Generation

The goal of the memory system is to provide high-band-
width access to each of the four threads of execution for both
instruction and data reads and data writes, over a wide variety
of access patterns, yet consume a minimum amount of area
and use a minimum of external bandwidth. To build a system
that is robust in this way turns out to be surprisingly intricate.
Simple designs of such a system that perform well for random

10

15

20

25

30

35

40

45

50

55

60

65

170

access patterns tend to perform poorly for sequential access
patterns, and vice-versa. The memory system design pre-
sented here employs multiple caching strategies to avoid poor
performance pitfalls.

The performance of the memory system for several differ-
ent patterns form a model of the combined patterns that we
expect to encounter in general programs:

Instruction sequence or program code references tend to be
relatively sequential and consume bandwidth at the rate of 32
bits per instruction. With a peak execution rate of four instruc-
tions per cycle, this pattern can consume as much as 128 bits
per cycle. We assume that branch prediction mechanisms and
prefetching allow the memory system to perform program
code reads using otherwise available bandwidth. To attain an
average rate of 128 bits per cycle, peak rates must sometime
be well above this rate.

Sequential data reads occur frequently, using data sizes of
128 bits or less. For data sizes less than 128 bits, the LZC
holds previously read hexlets of data that reduces the strain on
the LOC. Note that for sequential byte reads, the LZC hits up
to %46 of the time, while for sequential octlet reads, the L.ZC
hits up to V2 of the time, and the sequential hexlet reads, the
LZC is of no use at all, except to buffer data between the LOC
and the KillerBus. A particular problem of sequential refer-
ences is that most exceptional conditions in the cache affect
not just one reference, but several of the references that fol-
low, when more than one cycle is required to recover.

Sequential data writes are also frequent, and the LZC is
used to bufter the LOC’s 128 bit reads and writes and perform
byte merging. By buffering data in the LZC, a single LOC
write may retire information for several sequential stores.
Stores must not be committed into the memory system until
all previous instructions are retired (or we know that they will
be eventually retired), so the LZC plays an important role in
holding store data until commitment.

Random data reads will likely miss in the LZC, and get
their data from the LOC. The MTB may hit or miss—a miss
will require the use of more resources: the GTB, and LOC
tags to resolve the reference. Making such references non-
blocking with respect to the address unit allows the LOC to
receive a high request rate that is essential to maintaing a high
average throughput.

Random data writes require the use the LZC for byte merg-
ing and buffering. There are several independent activities
that must each be completed before retiring a store, including
resolving the cache status, reading surrounding bytes into the
LZC, obtaining the store data itself from the address or execu-
tion unit, and retiring or clearing all previous instructions.
Only then can the write of the LZC into the LOC be sched-
uled.

The address units of each of the four threads provide up to
two global virtual addresses of load, store, or wide instruc-
tions, for a total of eight addresses. LTB units associated with
each thread translate the local addresses into global
addresses. The L.ZC operates on global addresses. MTB,
BTB, and PTB units associated with each thread translate the
global addresses into physical addresses and cache addresses.
(A PTB unit associated with each thread produces physical
addresses and cache addresses for program counter refer-
ences—this is optional, as by limiting address generation to
two per thread, the MTB can be used for program references.)
Cache addresses are presented to the LOC as required, and
physical addresses are checked against cache tags as required.

Each thread has two address generation units, capable of
producing two aligned, or one unaligned load or store opera-
tion per cycle. Alternatively, these units may produce a single
load or store address and a branch target address.

US 9,229,713 B2

171

Each thread has a LTB, which translates the two addresses
into global virtual addresses.

Each thread has a MTB, which looks up the two references
into the LOC. The optional PTB provides for additional ref-
erences that are program code fetches.

In parallel with the MTB, these two references are com-
bined with the six references from the other threads and
partitioned into even and odd hexlet references. Up to four
references are selected for each of the even and odd portions
of'the LZC. One reference for each of the eight banks of the
LOC (four are even hexlets; four are odd hexlets) are selected
from the eight load/store/branch references and the PTB ref-
erences.

Some references may be directed to both the LZC and
LOC, in which case the LZC hit causes the LOC data to be
ignored. An LZC miss which hits in the MTB is filled from the
LOC to the LZC. An LZC miss which misses in the MTB
causes a GTB access and LOC tag access, then an MTB fill
and LOC access, then an LZC fill.

At the LOC, a number of competing references may
attempt to access a single LOC cache bank, and a fair but
effective arbitration scheme is required to determine which
reference to select. Fairness is important so that no thread
consistently receives more access to shared resources than the
others. There are also constraints introduced by the bus inter-
face (Inquiry cycles must be responded to immediately: lim-
ited FIFO space in the bus interface may require high priority
to avoid FIFO overrun), and demands for optimizing forward
progress (Store should have high priority to release pipeline
resources, program fetch low priority to avoid delaying
loads). The general priority of access: (highest/lowest) is (0)
cache inquiry, (1) cache dump, (2) cache fill, (3) store, (4)
load, (5) program.

FIG. 102 illustrates the operations that are performed to
complete a load operation and the cycles in which they are
performed.

The following sections specify the operation of the
memory pipeline in additional detail:

Cycle 0

During the issue cycle, within each thread, the first one or
two instructions are decoded and source general registers are
fetched. As the general register sources are at a fixed location
in the instruction and only the first two instructions are can-
didates for issue to the A-units, the general register fetches are
performed unconditionally and in parallel with instruction
decoding.

Cycle 1

During the first address generation cycle, for each thread,
fetched general registers are updated with bypassed results
from previous instructions, and either one or two addresses
are computed.

For unaligned load and store operations, the two address
units are both used to compute both the lowest address (an
offset of 0) and the highest address (an offset of size-1) that is
the memory target of the unaligned operation, thus only one
such operation is performed at a time per thread. If these
addresses cross a hexlet boundary, one address is to an odd
hexlet and the other is to an even hexlet.

If both the first and second instructions are aligned load or
store instructions, two independent addresses are produced.
These two addresses may be two even hexlets or two odd
hexlets, or one even hexlet and one odd hexlet.

If one or both of the first and second instructions are not
load or store instructions, up to two additional addresses are
selected using the currently fetching program counter, filling
the queue with two address references.

10

15

20

25

30

35

40

45

50

55

60

65

172

The high order bits of the base general registers of both
addresses are run through the LTB, producing two global
addresses. Because the base general registers rather than the
addresses are translated, the translation can be performed in
parallel with the address addition. Because only high-order
bits are affected, the low-order bits including particularly the
“hexlet bit” are unchanged by the LTB.

The MTB attempts to translate these two global addresses
to cache addresses, and the BTB attempts to translate these
two global addresses to niche addresses. Either of these trans-
lation can result in a reference to the LOC (MTB as cache,
BTB as niche). If both structures miss for a global address, the
GTB must be consulted to resolve the address, which may
eventually reach the cache, niche, or other memory-mapped
structures.

The two physical or cache addresses from each thread are
combined with the addresses from the other three threads,
producing two collections: (0) four even hexlet addresses and
(1) four odd hexlet addresses. Arbitration selects an appro-
priate subset of the available references for servicing, taking
into account priority based on the type of reference (instruc-
tion vs. data) and queue position (higher priority for earlier
instructions).

The global addresses are checked against the LZC tag for
conflicts or hits.

Cycle 2

Any of the addresses that hit in the LZC on the previous
cycleare accessed. Read values are sent through the aligner to
the Killer-Bus and made available to the A-unit general reg-
ister bypass.

Up to eight of the LOC banks are scheduled to be fetched
using niche or cache addresses from the previous cycle that
hit in the MTB or BTB.

The physical or cache addresses are checked against LZC
physical tags for hits that were missed by a comparison of
global address—these cause L.ZC data to be used in prefer-
ence to LOC data—LZC data will be fetched on cycle 3, if
present, or stalled if not present (due to pending store).

Ifthe MTB/BTB misses, on this cycle the GTB is accessed.
The access is classified as a BTB miss if the address is not
cached, or an MTB miss if cached.

For an MTB miss, two LOC tag hexlets are scheduled to be
fetched from the LOC, values are eventually placed into the
MTB.

Cycle 3

Load results may be freely used on this cycle if fetched
from the LZC.

Up to eight of the LOC banks are accessed using niche or
cache addresses from the previous cycle.

For a BTB miss, the translation is placed into the BTB and
a LOC niche access is scheduled to be fetched from the LOC.

Cycle 4

Accesses from the LOC on the previous cycle are sent
through the LZC bypass and the aligner to the Killer Bus and
made available to the A-unit general register bypass. Results
are also loaded in the LZC for future use.

On a BTB miss, the LOC accesses the hexlet scheduled
from the previous cycle.

On an MTB miss, the LOC accesses up to two LOC tag
hexlets from the previous cycle.

Cycle 5

Load results may be freely used on this cycle if fetched
from the LOC.

On an MTB miss, the MTB is updated, and a LOC fetch is
scheduled for the following cycle—continue at cycle 2.

US 9,229,713 B2

173

Load latency

The latency required to service a load instruction is given
by the following, assuming no collistion cycles with other
memory operations: The latency is the number of clock cycles
later that an instruction may use the result of an earlier load
instruction.

Condition Latency

LZC virtual hit

LZC virt miss, phys hit
MTB hit, LOC hit
BTB miss

MTB miss, LOC hit
LOC miss

~ W

You want it when?

Burst misses

A particular concern is the effect that the latency of the
MTB miss has on memory bandwidth. For sequential (stride
1) memory references of 128 bits (16 bytes), an MTB miss
occurs every 16 cycles with one reference per cycle. As the
MTB write does not occur until cycle 5, which is three cycles
after the MTB xlate in cycle 1, there are 4 cycles in which a
memory request occurs to the same cache block as the origi-
nal MTB miss. Since these requests are to addresses that are
not yet resolved, the MTB miss causes these references to
stack up in cycle 1. Even if these references are queued,
performance is not enhanced unless they can be completed in
out-of-order fashion with respect to future references.

A four-cycle delay every 16 cycles is not so bad, but for two
interleaved sequential references, the figure could easily be 8
cycles for every 16, or 50% degradation. Non-unit strides
would induce further degradation of available rate.

To continue operation through the MTB miss, we need to
detect that these additional references are to the same address
as the original MTB miss, and buffer the requests accord-
ingly. Note that after cycle 2, the address has been translated
by the GTB and is known, though we do not know whether the
cache block is present, or which set is employed until cycle 5.
The LOC address used in cycle 6 can be employed simulta-
neously for all LOC banks that have been refenced, thus
allowing the memory system to catch up with the references.

To implement this, we need only keep track of the attach-
ment of these additional references to the original MTB-miss
causing reference, and keep a bitwise map of which banks are
to be read upon verification of the cache hit. If not all banks
are successfully allocated to the reference, additional cycles
are then employed until the group reference is satisfied. If the
cache misses, the bitwise map can again be employed to
determine which sub-blocks to fill.

To attach these references to the original MTB miss, the
virtual address of the MTB miss must be compared against
each additional memory reference address that is attempted.
A match causes the bitwise map to be set for the indicated
reference.

Since there are 8 banks in the LOC, only half of the cache
line can be simultaneously referenced. This overlapped han-
dling may be limited to one-half of the cache line, which still
allows for as many as eight cycles to be handled in this way.

One way to handle the comparison is to create a matching
MTB entry with the virtual address filled in, but a distinct
state showing an unresolved MTB miss. The bitwise map may
be retained in the tv bits of the MTB. The state may use bits
5-6 otherwise currently unspecified. This MTB entry could be
filled in as soon as the MTB miss is detected, though this risks
burning out a valid MTB entry whenever there is a BTB miss.
(Otherwise this can be performed as soon as the GTB contents

5

10

15

20

25

30

35

40

45

50

55

60

65

174

indicate a cacheable MTB miss.) By immediately filling in
the MTB, up to two simultancous MTB misses can be
handled on each cycle, so that address generation need not
stop for MTB misses. The two addresses generated on one
cycle must also be compared against each other so that a
single MTB entry is created with two simultaneous refer-
ences experience the same MTB miss.

If the reference turns out to be a BTB miss or uncached
memory reference, the MTB data can be used to keep appro-
priate LOC bank or sub-line information.

Memory Banks

The LZC has two banks, each servicing up to four requests.
The LOC has eight banks, each servicing at most one request.

Assuming random request addresses, FIG. 103 shows the
expected rate at which requests are serviced by multi-bank/
multi-port memories that have 8 total ports and divided into 1,
2, 4, or 8 interleaved banks. The LZC is 2 banks, each with 4
ports, ad the LOC is 8 banks, each 1 port.

Note a small difference between applying 12 references
versus 8 references for the LOC (6.5 vs 5.2), and for the L.ZC
(7.8 vs. 6.9). This suggests that simplifying the system to
produce two address per thread (program+load/store or two
load/store) will not overly hurt performance. A closer simu-
lation, taking into account the sequential nature of the pro-
gram and load/store traffic may well yield better numbers, as
threads will tend to line up in non-interfering patterns, and
program microcaching reduces program fetching.

FIG. 104 shows the rates for both 8 total ports and 16 total
ports.

Note significant differences between 8-port systems and
16-port systems, even when used with a maximum of 8
applied references. In particular, a 16-bank 1-port system is
better than a 4-bank 2-port system with more than 6 applied
references. Current layout estimates would require about a
14% area increase (assuming no savings from smaller/sim-
pler sense amps) to switch to a 16-port LOC, with a 22%
increase in 8-reference throughput.

Wide Microcache

A wide microcache (WMC) holds only data fetched for
wide (W) instructions, for each unit which implements one or
more wide (W) instructions.

The wide (W) instructions each operate on a block of data
fetched from memory and the contents of one or more general
registers, producing a result in a general register. Generally,
the amount of data in the block exceeds the maximum amount
of data that the memory system can supply in a single cycle,
so caching the memory data is of particular importance. All
the wide (W) instructions require that the memory data be
located at an aligned address, an address that is a multiple of
the size of the memory data, which is always a power of two.

The wide (W) instructions are performed by functional
units which normally perform execute or “back-end” instruc-
tions, though the loading of the memory data requires use of
the access or “front-end” functional units. To minimize the
use of the “front-end” functional units, special rules are used
to maintain the coherence of a wide microcache (WMC).

Execution of a wide (W) instruction has a residual effect of
loading the specified memory data into a wide microcache
(WMC). Under certain conditions, a future wide (W) instruc-
tion may be able to reuse the WMC contents.

FIG. 7 illustrates the specific structures required to imple-
ment the wide microcache:

First of all, any store or cache coherency action on the
physical addresses referenced by the WMC will invalidate the
contents of the WMC. The minimum translation unit of the
virtual memory system, 256 bytes, defines the number of
physical address blocks which must be checked by any store.

US 9,229,713 B2

175

A WMC for the W.TABLE instruction may be as large as
4096 bytes, and so requires as many as 16 such physical
address blocks to be checked for each WMC entry. A WMC
for the W.SWITCH or WMUL.* instructions need check
only one address block for each WMC entry, as the maximum
size is 128 bytes.

By making these checks on the physical addresses, we do
notneed to be concerned about changes to the virtual memory
mapping from virtual to physical addresses, and the virtual
memory state can be freely changed without invalidating any
WMC.

Absent any of the above changes, the WMC is only valid if
it contains the contents relevant to the current wide (W)
instruction. To check this with minimal use of the front-end
units, each WMC entry contains a first tag with the thread and
address general register for which it was last used. If the
current wide (W) instruction uses the same thread and address
general register, it may proceed safely. Any intervening writes
to that address general register by that thread invalidates the
WMC thread and address general register tag.

If the above test fails, the front-end is used to fetch the
address general register and check its contents against a sec-
ond WMC tag, with the physical addresses for which it was
lastused. Ifthe tag matches, it may proceed safely. As detailed
above, any intervening stores or cache coherency action by
any thread to the physical addresses invalidates the WMC
entry.

If both the above tests fail for all relevant WMC entries,
there is no alternative but to load the data from the virtual
memory system into the WMC. The front-end units are
responsible for generating the necessary addresses to the
virtual memory system to fetch the entire data block into a
WMC.

For the first implementation, it is anticipated that there be
eight WMC entries for each of the two X units (for
W.SWITCH instructions), eight WMC entries for each of the
two E units (for W.MUL instructions), and four WMC entries
for the single T unit. The total number of WMC address tags
requires is 8*2*1+8%*2%1+4*1*16=96 entries.

The number of WMC address tags can be substantially
reduced to 32+4=36 entries by making an implementation
restriction requiring that a single translation block be used to
translate the data address of W.TABLE instructions. With this
restriction, each W.TABLE WMC entry uses a contiguous
and aligned physical data memory block, for which a single
address tag can contain the relevant information. The size of
such a block is a maximum of 4096 bytes. The restriction can
be checked by examining the size field of the referenced GTB
entry.

Referring to FIG. 9, the following data structures are
employed to implement the wide microcache.

The flow chart in FIG. 8 illustrates the algorithm employed
by the wide microcache control logic to ensure that the micro-
cache is valid.

The diarams in FIGS. 10-11 illustrate the implementation
of the microcache control:

Level Zero Cache

The innermost cache level, here named the “Level Zero
Cache,” (LZC) is fully associative and indexed by global
address. Entries in the LZC contain global addresses and
previously fetched data from the memory system. The LZC is
an implementation feature, not visible to the Zeus architec-
ture.

Entries in the LZC are also used to hold the global
addresses of store instructions that have been issued, but not
yet completed in the memory system. The LZC entry may
also contain the data associated with the global address, as

20

30

40

45

50

55

176

maintained either before or after updating with the store data.
When it contains the post-store data, results of stores may be
forwarded directly to the requested reference.

With an LZC hit, data is returned from the LZC data, and
protection from the LZC tag. No LOC access is required to
complete the reference.

All loads and program fetches are checked against the LZC
for conflicts with entries being used as store buffer. Ona LZC
hit on such entries, if the post-store data is present, data may
be returned by the LZC to satisfy the load or program fetch. If
the post-store data is not present, the load or program fetch
must stall until the data is available.

With an LZC miss, a victim entry is selected, and if dirty,
the victim entry is written to the LOC. An entry allocated as
store buffer, but that has not yet been retired, is not a suitable
choice as victim entry. The LOC cache is accessed, and a valid
LZC entry is constructed from data from the LOC and tags
from the LOC protection information.

All stores are checked against the LZC for conflicts, and
further allocate an entry in the LZC, or “take over” a previ-
ously clean LZC entry for the purpose of store buffering.
Unaligned stores may require two entries in the LZC. At time
of allocation, the address is filled in.

Two operations then occur in parallel—1) for write-back
cached references, the remaining bytes of the hexlet are
loaded from the LOC (or LZC), and 2) the addressed bytes are
filled in with data from data path. If an exception causes the
store to be purged before retirement, the LZC entry is marked
invalid, and not written back. When the store is retired, the
LZC entry can be written back to LOC or external interface.

Physical address coherency

When the mapping from global address to physical address
is many-to-one, that is more than one global address may map
to a single physical address, special consideration must be
given to coherence of memory transactions. For each L.ZC
entry, either the physical address (for references that are not
cached) or the cache physical address (for cache or niche
references) is retained. Each store operation produces the
niche address from the BTB or the cache address from the
MTRB, or the physical address from the GTB, and a compari-
son of physical tags is used to serialize references for which
the physical tags match.

When a store address matches an L.ZC entry, even though
the global address did not match, the matching L.ZC entry
must be retired or purged. When a load address matches an
LZC entry, even though the global address did not match, the
matching [.ZC entry must be retired, purged, or retagged with
the global address.

Each ofthe WMC entries must be checked for coherency as
well—this is performed with a similar structure (and similar
timing) as the L.ZC physical tag check. The effect of a match
is to invalidate the WMC when such a store address matches
the WMC physical address.

Structure

The eight memory addresses are partitioned into up to four
odd addresses, and four even addresses.

The LZC contains 16 fully associative entries that my each
contain a single hexlet of data at even hexlet addresses
(LZCE), and another 16 entries for odd hexlet addresses
(LZCO). The maximum capacity of the LZC is 16*32=512
bytes.

The tags for these entries are indexed by global virtual
address (63 . . . 5), and contain access control information,
detailed below.

The address of entries accessed associatively is also
encoded into binary and provided as output from the tags for
use in updating the L.ZC, through its write ports.

US 9,229,713 B2

177

8 bit rwxg

16 bit valid

16 bit dirty

4 bit LO$ address

16 bit protection 5

56-bit physical address

1-bit LOC presence

def data,protect,valid,dirty,match <= LevelZeroCacheRead(ga) as
€0 < ga,
match < NONE

for i <= 0 to LevelZeroCacheEntries/2-1 10

if(gags. s = LevelZeroTag[eo][i] then
match < i
endif
endfor
if match = NONE then

raise LevelZeroCacheMiss 15

else
data <= LevelZeroData[eo][match] ;57 o
valid < LevelZeroData[eo][match] 43 1og
dirty < LevelZeroData[eo][match],sq (44
protect <= LevelZeroData[eo][match] 47160
endif

enddef 20

Micro Translation Buffer
The Micro Translation Buffer (MTB) is an implementa-

tion-dependent structure which reduces the access traffic to ,5

the GTB and the LOC tags. The MTB contains and caches
information read from the GTB and LOC tags, and is con-
sulted on each access to the LOC.

To access the LOC, a global address is supplied to the

Micro-Translation Buffer (MTB), which associatively looks 30

up the global address into a table holding a subset of the LOC
tags. In addition, each table entry contains the physical
address bits 14 . . . 8 (7 bits) and set identifier (2 bits) required
to access the LOC data.

In the first Zeus implementation, there are two MTB
blocks—MTB 0 is used for threads 0 and 1, and MTB 1 is
used for threads 2 and 3. Per clock cycle, each MTB block can
check for 4 simultaneous references to the LOC. Each MTB
block has 16 entries.

Each MTB entry consists of a bit less than 128 bits of
information, including a 56-bit global address tag, 8 bits of
privilege level required for read, write, execute, and gateway
access, a detail bit, and 10 bits of cache state indicating for
each triclet (32 bytes) sub-block, the MESI state.

Match

63 87 43 0

56 4 4

Output

The output of the MTB combines physical address and 5
protection information from the GTB and the referenced
cache line.

| gi | xi | vs | ct | gpl | gp0 |
9 9 11 12 8 8

6 5 4 32 0

gp0: |0|0|da|so| cc |

35

40

45

60

65

-continued

15 1413 1211 109 8

gpl: | g | X | W | T |
2 2 2 2

26 25 2423 16

ct: |da| mesil tv |

1 2 8
38 3635 3332 3029 27
vs: | vs3 | vs2 | vsl | vs0 |
3 3 3 3

47 4140 39

Xi: | cl | si |
7 2

56 48

gi: | gi |

The meaning of the fields are given by the following table:

name size meaning

global address

GTB index

cache index

set index

victim select

detail access from cache line

coherency: modified (3), exclusive (2), shared (1), invalid (0)

ga 56
9
7
2
2
1
2
8 triclet valid (1) or invalid (0)
2
2
2
2
1
1
1
3

gi
cl
si

minimum privilege required for gateway access
minimum privilege required for execute access
minimum privilege required for write access
minimum privilege required for read access
reserved

detail access from GTB

strong ordering

cache control

With an MTB hit, the resulting cache index (14 . . . 8 from
the MTB, bit 7 from the L A) and set identifier (2 bits from the
MTB) are applied to the LOC data bank selected from bits
6 ... 4 of the GVA. The access protection information (pr and
rwxg) is supplied from the MTB.

Withan MTB (and BTB) miss, a victim entry is selected for
replacement. The MTB and BTB are always clean, so the
victim entry is discarded without a writeback. The GTB (de-
scribed below) is referenced to obtain a physical address and
protection information. Depending on the access information
in the GTB, either the MTB or BTB is filled.

Note that the processing of the physical address pa;, &
against the niche limit nl can be performed on the physical
address from the GTB, producing the LOC address, ci. The

5 LOC address, after processing against the nl is placed into the

MTB directly, reducing the latency of an MTB hit.

Four tags are fetched from the LOC tags and compared
against the PA to determine which of the four sets contain the
data. If one of the four sets contains the correct physical
address, a victim MTB entry is selected for replacement, the
MTB is filled and the LOC access proceeds. If none of the
four sets is a hit, an LOC miss occurs.

The operation of the MTB is largely not visible to soft-
ware—hardware mechanisms are responsible for automati-
cally initializing, filling and flushing the MTB. Activity that
modifies the GTB or LOC tag state may require that one or
more MTB entries are flushed.

US 9,229,713 B2

179

A write to the GTBUpdate register that updates a matching
entry, a write to the GTBUpdateFill register, or a direct write
to the GTB all flush relevant entries from the MTB. MTB
flushing is accomplished by searching MTB entries for values
that match on the gi field with the GTB entry that has been
modified. Each such matching MTB entry is flushed.

The MTB is kept synchronous with the LOC tags, particu-
larly with respect to MESI state. On an LOC miss or LOC
snoop, any changes in MESI state update (or flush) MTB
entries which physically match the address. If the MTB may
contain less than the full physical address: it is sufficient to
retain the LOC physical address (ci |[v||si).

Block Translation Buffer

Zeus has a per thread “Block Translation Buffer” (BTB).
The BTB retains GTB information for uncached address
blocks. An implementation may limit use of the BTB to
address blocks that reference the LOC niche, as is done in the
first implementation, or alternatively may permit the BTB to
contain any uncache address block. The BTB is used in par-
allel with the MTB—at most one of the BTB or MTB may
translate a particular reference. When both the BTB and MTB
miss, the GTB is consulted, and depending on the result, the
block is filled into either the MTB or BTB as appropriate. In
the first Zeus implementation, the BTB has 2 entries for each
thread.

BTB entries cover any power-of-two granularity, as they
retain the size information from the GTB. BTB entries con-
tain no MESI state, as they only contain uncached blocks.

Each BTB entry consists of 128 bits of information, con-
taining the same information in the same format as a GTB
entry, although if limited in use to the LOC niche, only the
LOC physical address must be maintained, and sufficient
block size to cover the LOC niche.

The operation of the BTB is largely not visible to soft-
ware—hardware mechanisms are responsible for automati-
cally initializing, filling and flushing the BTB. Activity that
modifies the GTB may require that one or more BTB entries
are flushed.

A write to the GTBUpdate register that updates a matching
entry, a write to the GTBUpdateFill register, or a direct write
to the GTB all flush relevant entries from the BTB. BTB
flushing is accomplished by searching BTB entries for values
that match on the gi field with the GTB entry that has been
modified. Each such matching BTB entry is flushed.

Niche blocks are indicated by GTB information, and cor-
respond to blocks of data that are retained in the LOC and
never miss. A special physical address range indicates niche
blocks. For this address range, the BTB enables use of the
LOC as a niche memory, generating the “set select” address
bits from low-order address bits. There is no checking of the
LOC tags for consistent use of the LOC as a niche—the nl
field must be preset by software so that LOC cache replace-
ment never claims the LOC niche space, and only BTB miss
and protection bits prevent software from using the cache
portion of the LOC as niche.

Other address ranges include other on-chip resources, such
as bus interface registers, the control register and status reg-
ister, as well as off-chip memory, accessed through the bus
interface. Each of these regions are accessible as uncached
memory.

Program Translation Buffer

Later implementations of Zeus may optionally have a per-
thread “Program Translation Buffer” (PTB). The PTB retains
GTB and LOC cache tag information. The PTB enables gen-
eration of LOC instruction fetching in parallel with load/store
fetching. The PTB is updated when instruction fetching
crosses a cache line boundary (each 64 instructions in

10

15

20

25

30

35

40

45

50

55

60

65

180

straight-line code). The PTB functions similarly to a one-
entry MTB. but can use the sequential nature of program code
fetching to avoid checking the 56-bit match. The PTB is
flushed at the same time as the MTB.

The initial implementation of Zeus has no PTB—the MTB
suffices for this function.

Global Virtual Cache

The initial implementation of Zeus contains cache which is
both indexed and tagged by a physical address. Other proto-
type implementations have used a global vitual address to
index and/or tag an internal cache. This section will define the
required characteristics of a global vitually-indexed cache.
TODO

Memory Interface

Dedicated hardware mechanisms are provided to fetch data
blocks in the levels zero and one caches, provided that a
matching entry can be found in the MTB or GTB (or if the
MMU is disabled). Dedicated hardware mechanisms are pro-
vided to store back data blocks in the level zero and one
caches, regardless ofthe state of the MTB and GTB. When no
entry is to be found in the GTB, an exception handler is
invoked either to generate the required information from the
virtual address, or to place an entry in the GTB to provide for
automatic handling of this and other similarly addressed data
blocks.

The initial implementation of Zeus accesses the remainder
of the memory system through the “Socket 7” interface. Via
this interface, Zeus accesses a secondary cache, DRAM
memory, external ROM memory, and an 1/O system The size
and presence of the secondary cache and the DRAM memory
array, and the contents of the external ROM memory and the
1/O system are variables in the processor environment.

Snoop

The “Super Socket 7 bus requires certain bus accesses to
be checked against on-chip caches. On a bus read, the address
is checked against the on-chip caches, with accesses aborted
when requested data is in an internal cache in the M state, and
the E state, the internal cache is changed to the S state. On a
bus write, data written must update data in on-chip caches. To
meet these requirements, physical bus addresses must be
checked against the LOC tags.

The SS7 bus requires that responses to inquire cycles occur
with fixed timing. At least with certain combinations of bus
and processor clock rate, inquire cycles will require top pri-
ority to meet the inquire response timing requirement.

Synchronization operations must take into account bus
activity—generally a synchronization operation can only
proceed on cached data which is in Exclusive or Modified—if
cached data in Shared state, ownership must be obtained.
Data that is not cached must be accessed using locked bus
cycles.

Load

Load operations require partitioning into reads that do not
cross a hexlet (128 bit) boundary, checking for store conflicts,
checking the LZC, checking the LOC, and reading from
memory. Execute and Gateway accesses are always aligned
and since they are smaller than a hexlet, do not cross a hexlet
boundary.

Note: S7 processors perform unaligned operations LSB
first, MSB last, up to 64 bits ata time. Unaligned 128 bit loads
need 3 64-bit operations, LSB, octlet, MSB. Transfers which
are smaller than a hexlet but larger than an octlet are further
divided in the S7 bus unit.

US 9,229,713 B2

181

Definition

def data < LoadMemoryX(ba,la,size,order)
assert (order = L) and ((la and (size/8-1)) = 0) and (size = 32)
hdata < TranslateAndCacheAccess(ba,la,size,X,0)
data <= hdataz |, g«ga and 15)..8%(a and 15)
enddef
def data < LoadMemoryGi(ba,la,size,order)
assert (order = L) and ((la and (size/8-1)) = 0) and (size = 64)
hdata < TranslateAndCacheAccess(ba,la,size,G,0)
data <= 63+8*(la and 15)..8*(la and 15)
enddef
def data < LoadMemory(ba,la,size,order)
if (size > 128) then
data0 < LoadMemory(ba, la,size/2, order)
datal < LoadMemory(ba, la+(size/2), size/2, order)
case order of
L:
data (] datal || data0
B:
data [data0 || datal
endcase
else
bs < 8*la, o
be < bs + size
if be > 128 then
data0 < LoadMemory(ba, la, 128 - bs, order)
datal < LoadMemory(ba, (lag; 5+ 1) || 0% be - 128, order)
case order of
L:
data < (datal || data0)
B:
data < (data0 || datal)
endcase
else
hdata < TranslateAndCacheAccess(ba,la,size,R,0)
for i< 0 to size-8 by 8
j < bs+ ((order=L) ? i : size-8-i)
data,, ; <= hdata,
endfor
endif
endif
enddef

+7..1

Store

Store operations requires partitioning into stores less than
128 bits that do not cross hexlet boundaries, checking for
store conflicts, checking the L.ZC, checking the LOC, and
storing into memory.

Definition

def StoreMemory(ba,la,size,order,data)
bs < 8*la, o
be < bs + size
if be > 128 then
case order of
L:
data0 < data 57,5 ¢
datal < datag..) 128.5s
B:
data0 < data..) pe 128
datal < data,, 59 ¢
endcase
StoreMemory(ba, la, 128 — bs, order, data0)
StoreMemory(ba, (lagy s+ 1) || 0%, be - 128, order, data 1)
else
for i< 0 to size-8 by 8
j < bs+ ((order=L) ? i : size-8-i)
hdata,, ; ; < data,, 7 ;
endfor
xdata < TranslateAndCacheAccess(ba, la, size, W, hdata)
endif
enddef

10

15

20

25

30

35

40

45

50

55

60

65

182

Memory

Memory operations require first translating via the LTB
and GTB, checking for access exceptions, then accessing the
cache.

Definition

def hdata < TranslateAndCacheAccess(ba,la,size,rwxg,hwdata)
if ControlRegisters, then
case rwxg of
R:
at < 0
W
at< 1
X:
at < 2
G:
at<3
endcase
W< (rwxg=W)?W:R
ga,LocalProtect <= LocalTranslation(th,ba,la,pl)
if LocalProtecty, sxqy gyowq < pl then
raise AccessDisallowedByLTB
endif
lda < LocalProtect,
pa,GlobalProtect <= GlobalTranslation(th,ga,pl,1da)
if GlobalProtecty, s« 4. g4owar < pl then
raise AccessDisallowedByGTB
endif
cc < (LocalProtect,_o > GlobalProtect,) ? LocalProtect, g :
GlobalProtect,
so <= LocalProtect; or GlobalProtect;
gda < GlobalProtect,
hdata, TagProtect <
LevelOneCacheAccess(pa,size,lda,gda,cc,rw,hwdata)
if (Ida) gda) TagProtect) = 1 then
if TagProtect then
PerformAccessDetail(AccessDetail RequiredByTag)
elseif gda then
PerformAccessDetail(AccessDetail RequiredByGlobal TB)
else
PerformAccessDetail(AccessDetailRequiredByLocal TB)
endif
endif
else
case rwxg of
R, X, G:
hdata < ReadPhysical(la,size)
W:
WritePhysical(la,size,hwdata)
endcase
endif
enddef

BUS INTERFACE

The initial implementation of the Zeus processor uses a
“Super Socket 7 compatible” (SS7) bus interface, which is
generally similar to and compatible with other “Socket 7" and
“Super Socket 7” processors such as the Intel Pentium, Pen-
tium with MMX Technology; AMD K6, K6-1I, K6-111; IDT
Winchip C6, 2,2A, 3, 4; Cyrix 6x86, etc. and other “Socket 7”
chipsets listed below.

The SS7 bus interface behavior is quite complex, but well-
known due to the leading position of the Intel Pentium design.
This document does not ye2t contain all the detailed infor-
mation related to this bus, and will concentrate on the differ-
ences between the Zeus SS7 bus and other designs. For func-
tional specification and pin interface behavior, the Pentium
Processor Family Developer’s Manual is a primary refer-
ence. For 100 MHz SS7 bus timing data, the AMD K6-2
Processor Data Sheet is a primary reference.

Motherboard Chipsets

The following motherboard chipsets are designed for the
100 MHz “Socket 7” bus:

US 9,229,713 B2

183

Manufacturer

clock North
bridge

Website Chipset rate

South
bridge

VIA technologies, Inc.

www.via.com.tw Apollo MVP3

100 MHz vt82c¢598at vt82c598b

184

Silicon Integrated Systems www.sis.com.tw SiS 5591/5592 75 MHz SiS 5591 SiS 5595
Acer Laboratories, Inc, www.acerlabs.com Ali Aladdin V 100 MHz M15341 M1543C
The following processors are designed for a “Socket 77 -continued
bus: 10
BUSCHK# I BUS CHecK is sampled on the rising edge of the bus
clock, and when asserted, causes a bus error machine
check.
Manufacturer Website Chips clock rate CACHE# O CACHE, when asserted, indicates a cacheable read
. . transaction or a burst write transaction.

Advanced Micro Devices www.amd.com K6-2 100MHz 15 cLk 1 bus CLocK provides the bus clock timing edge and the

Advanced Micro Devices www.amd.com K6-3 100 MHz frequency reference for the processor clock.

Intel www.intel.com Pentium MMX 66 MHz CPUTYP I CPU TYPe, if low indicates the primary processor, if

IDT/Centaur www.winchip.com Winchip C6 75 MHz high, the dual processor.

IDT/Centaur www.winchip.com Winchip 2 100 MHz D/C# 1 Data/Code is driven with the address signal to indicate

IDT/Centaur www.wipchip.com Winchip 2A 100 MHz D630 o dDat?’ code, or lspetclal6 Zy;lfs' cdat bus clock

o o 20 . ata communicates its of data per bus clock.

IDT/Cth{mI WWW'Wln.Chlp'com Winchip 4 100 MHz D/P# O Dual/Primary is driven (asserted, low) with address on

NSM/Cyrix WWW.CyTiX.com the pri

primary processor
DP7..DPO IO Data Parity contains even parity on the same cycle as
data. A parity error causes a bus error machine check.
Pinout DPEN# IO Dual Processing Enable is asserted (driven low) by a
. . . . 5 Dual processor at reset and sampled by a Primary
In FIG. 105, signals which are different from Pentium processor at the falling edge of reset.
pinout, are indicated by italics underlining. Generally, other EADS# I dEXt'ermﬂ At(iid{ess Szré)be il}dicates that an exltemal
B . evice has driven address for an inquire cycle.
Pentlum-compatlble processors (such, as the AMD K6-2) EWBE# I External Write Buffer Empty indicates that the
define these Slgnals' external system has no pending write.
FERR# O Floating point ERRor is an emulator signal.
30 FLUSH# I cache FLUSH is an emulator signal.

A20M# I Address bit 20 Mask is an emulator signal. FRCMC# I Functional Redundancy Checking Master/Checker is

A31.A3 10 Address, in combination with byte enable, indicate not implemented.
the physical addresses of memory or device that is the HIT# IO HIT indicates that an inquire cycle or cache snoop hits
target of a bus transaction. This signal is an output, a valid line.
when the processor is initiating the bus transaction, HITM# IO HIT to a Modfied line indicates that an inquire cycle
and an input when the processor is receiving an 35 or cache snoop hits a sub-block in the M cache state.
inquire transaction or snooping another processor’s HLDA O bus HoLD Acknowlege is asserted (driven high) to
bus transaction. acknowlege a bus hold request

ADS# 10 ADdress Strobe, when asserted, indicates new bus HOLD I bus HOLD request causes the processor to float most
transaction by the processor, with valid address and of its pins and assert bus hold acknowlege after
byte enable simultaneously driven. completing all outstanding bus transactions or during

ADSC# O Address Strobe Copy is driven identically to address 40 reset.
strobe IERR# O Internal ERRor is an emulator signal.

AHOLD I Address HOLD, when asserted, causes the processor IGNNE# I IGNore Numeric Error is an emulator signal.
to INIT I INITialization is an emulator signal.
cease driving address and address parity in the next INTR I maskable INTeRrupt is an emulator signal.
bus clock cycle. INV I INValidation controls whether to invalidate the

AP IO Address Parity contains even parity on the same cycle 45 addressed cache sub-block on an inqure transaction.
as address. Address parity is generated by the KEN# I Cache ENable is driven with address to indicate that
processor when address is an output, and is checked the read or write transaction is cacheable.
when address is an input. A parity error causes a bus LINT1..LINTO I Local INTerrupt is not implemented.
error machine check. LOCK# O bus LOCK is driven starting with address and ending

APCHK# O Address Parity CHecK is asserted two bus clocks after after bus ready to indicate a locked series of bus
EADS# if address parity is not even parity of address. transactions.

APICEN I Advanced Programmable Interrupt Controller ENable 30 mow O Memory/Input Output is driven with address to
is not implemented. indicate a memory or I/O transaction,

BE7#.BEO# 10 Byte Enable indicates which bytes are the subject of a NA# I Next Address indicates that the external system will
read or write transaction and are driven on the same accept an address for a new bus cycle in two bus
cycle as address. clocks.

BF1..BFO 1 Bus Frequency is sampled to permit software to select NMI I Non Maskable Interrupt is an emulator signal.
the ratio of the processor clock to the bus clock. 55 PBGNT# IO Private Bus GraNT is driven between Primary and

BOFF# 1 BackOFF is sampled on the rising edge of each bus Dual processors to indicate that bus arbitration has
clock, and when asserted, the processor floats bus completed, granting a new master access to the bus.
signals on the next bus clock and aborts the current PBREQ# IO Private Bus REQuest is driven between Primary and
bus Dual processors to request a new master access to the
cycle, until the backoff signal is sampled negated. bus.

BP3..BPO O BreakPoint i§ an emulator signal.) 60 PCD O Page Cache Disable is driven with address to indicate

BRDY# I Bus ReaDY mdlcfites that valid data is present on data 2 not cacheable transaction.
on a read transaction, or that data has been accepted PCHK# O Parity CHecK is asserted (driven low) two bus clocks
g%vrite transaction. after data appears with odd parity on enabled bytes.

BRDYC# I Bus ReaDY Copy is identical to BRDY#; asserting PHIT# 10 Private HIT s dII.VeH between Primary and Duall
either signal has the same effect. processors to indicate that the current read or write

BREQ O Bus REQuest indicates a .rocessor initiated bus 65 transaction addresses a valid cache sub-block in the

request

slave processor.

US 9,229,713 B2

185

-continued

PHITM#

PICCLK
PICD1..PICDO
PEN#
PM1..PMO
PRDY

PWT

R/S#

RESET
SCYC

SMI#

10

10

Private HIT Modified is driven between Primary and
Dual processors to indicate that the current read or
write transaction addresses a modified cache sub-
block in the slave processor.

Programmable Interrupt Controller CLocK is not
implemented.

Programmable Interrupt Controller Data is not
implemented.

Parity Enable, if active on the data cycle, allows a
parity error to cause a bus error machine check.

O Performance Monitoring is an emulator signal.

O Probe ReaDY is not implemented.

O Page Write Through is driven with address to indicate
a not write allocate transaction.

I Run/Stop is not implemented.

I RESET causes a processor reset.

O Split CYCle is asserted during bus lock to indicate

that more than two transactions are in the series of bus

transactions.

I System Management Interrupt is an emulator signal.

15

186
-continued
SMIACT# O System Management Interrupt ACTive is an emulator
signal.
STPCLK# I SToP CLocK is an emulator signal.
TCK I Test CLocK follows IEEE 1149.1.
TDI I Test Data Input follows IEEE 1149.1.
TDO O Test Data Output follows IEEE 1149.1.
T™S I Test Mode Select follows IEEE 1149.1.
TRST# I Test ReSeT follows IEEE 1149.1.
vCC2 I VCCof2.8V at25 pins
VCC3 I VCCof3.3V at28pins
VCC2DET# O VCC2 DETect sets a. troiriate VCC2 voltage level.
VSS I VSS supplied at 53 pins
W/R# O Write/Read is driven with address to indicate write vs.
read transaction.
WB/WT# I Write Back/Write Through is returned to indicate that

data is permitted to be cached as write back.

Electrical Specifications

These preliminary electrical specifications provide AC and
DC parameters that are required for “Super Socket 7 com-

patibility.
Clock rate
66 MHz 75 MHz 100 MHz 133 MHz
Parameter
min max min max min maXx min max unit
CLK frequency 333 66.7 375 75 50 100 133 MHz
CLK period 15.0 30.0 13.3 263 10.0 20.0 ns
CLK high time (=2 v) 4.0 4.0 3.0 ns
CLK low time (=0.8 V) 4.0 4.0 3.0 ns
CLK rise time (0.8 V->2V) 0.15 15 0.15 1.5 015 1.5 ns
CLK fall time (2 V->0.8 V) 0.15 15 0.15 1.5 015 1.5 ns
CLK period stability 250 250 250 ps
A31..3 valid delay L1 63 1.1 45 1.1 4.0 ns
A31..3 float delay 10.0 7.0 7.0 ns
ADS# valid delay 1.0 60 1.0 45 1.0 4.0 ns
ADS# float delay 10.0 7.0 7.0 ns
ADSC# valid delay 1.0 7.0 1.0 45 1.0 4.0 ns
ADSC# float delay 10.0 7.0 7.0 ns
AP valid delay 1.0 85 1.0 55 1.0 5.5 ns
AP float delay 10.0 7.0 7.0 ns
APCHK?# valid delay 1.0 83 1.0 45 1.0 4.5 ns
BE7..0# valid delay 1.0 7.0 1.0 45 1.0 4.0 ns
BE7..0# float delay 10.0 7.0 7.0 ns
BP3..0 valid delay 1.0 10.0 ns
BREQ valid delay 1.0 80 1.0 45 1.0 4.0 ns
CACHE# valid delay 1.0 7.0 1.0 45 1.0 4.0 ns
CACHE# float delay 10.0 7.0 70 ns
D/C# valid delay 1.0 7.0 1.0 45 1.0 4.0 ns
D/C# float delay 10.0 7.0 7.0 ns
D63..0 write data valid delay 1.3 75 1.3 45 1.3 4.5 ns
D63..0 write data float delay 10.0 7.0 7.0 ns
DP7..0 write data valid delay 1.3 75 1.3 45 1.3 4.5 ns
DP7..0 write data float delay 10.0 7.0 7.0 ns
FERR# valid delay 1.0 83 1.0 45 1.0 4.5 ns
HIT# valid delay 1.0 68 1.0 45 1.0 4.0 ns
HITM# valid delay 1.1 60 1.1 45 1.1 4.0 ns
HLDA valid delay 1.0 68 1.0 45 1.0 4.0 ns
IERR# valid delay 1.0 8.3 ns
LOCK# valid delay 1.1 7.0 1.1 45 1.1 4.0 ns
LOCK# float delay 10.0 7.0 7.0 ns
M/IO# valid delay 1.0 59 1.0 45 1.0 4.0 ns
M/IO# float delay 10.0 7.0 7.0 ns
PCD valid delay 1.0 7.0 1.0 45 1.0 4.0 ns
PCD float delay 10.0 7.0 7.0 ns
PCHK# valid delay 1.0 7.0 1.0 45 1.0 4.5 ns
PM1..0 valid delay 1.0 10.0 ns
PRDY valid delay 1.0 8.0 ns
PWT valid delay 1.0 7.0 1.0 45 1.0 4.0 ns
PWT float delay 10.0 7.0 7.0 ns
SCYC valid delay 170 7.0 1.0 45 1.0 4.0 ns
SCYC float delay 10.0 7.0 7.0 ns
SMIACT# valid delay 1.0 73 1.0 45 1.0 4.0 ns

US 9,229,713 B2

187
-continued
Clock rate
66 MHz 75 MHz 100 MHz 133 MHz
Parameter
min max min max min max min max unit
W/R# valid delay 1.0 7.0 1.0 45 1.0 4.0 ns
W/R# float delay 10.0 7.0 7.0 ns
A31..5 setup time 6.0 3.0 3.0 ns
A31..5 hold time 1.0 1.0 1.0 ns
A20M# setup time 5.0 3.0 3.0 ns
A20M# hold time 1.0 1.0 1.0 ns
AHOLD setup time 55 3.5 35 ns
AHOLD hold time 1.0 1.0 1.0 ns
AP setup time 5.0 1.7 1.7 ns
AP hold time 1.0 1.0 1.0 ns
BOFF# setu. time 55 3.5 35 ns
BOFF# hold time 1.0 1.0 1.0 ns
BRDY# setup time 5.0 3.0 3.0 ns
BRDY# hold time 1.0 1.0 1.0 ns
BRDYC# setup time 5.0 3.0 3.0 ns
BRDYC# hold time 1.0 1.0 1.0 ns
BUSCHK# setup time 5.0 3.0 3.0 ns
BUSCHK# hold time 1.0 1.0 1.0 ns
D63..0 read data setup time 2.8 1.7 1.7 ns
D63..0 read data hold time 1.5 1.5 1.5 ns
DP7..0 read data setup time 2.8 1.7 1.7 ns
DP7..0 read data hold time 1.5 1.5 1.5 ns
EADS# setup time 5.0 3.0 3.0 ns
EADS# hold time 1.0 1.0 1.0 ns
EWBE# setup time 5.0 1.7 1.7 ns
EWBE# hold time 1.0 1.0 1.0 ns
FLUSH# setup time 5.0 1.7 1.7 ns
FLUSH# hold time 1.0 1.0 1.0 ns
FLUSH# async pulse width 2 2 2 CLK
HOLD setup time 5.0 1.7 1.7 ns
HOLD hold time 1.5 1.5 1.5 ns
IGNNE# setup time 5.0 1.7 1.7 ns
IGNNE# hold time 1.0 1.0 1.0 ns
IGNNE# async pulse width 2 2 2 CLK
INIT setup time 5.0 1.7 1.7 ns
INIT hold time 1.0 1.0 1.0 ns
INIT async pulse width 2 2 2 CLK
INTR setup time 5.0 1.7 1.7 ns
INTR hold time 1.0 1.0 1.0 ns
INV setup time 5.0 1.7 1.7 ns
INV hold time 1.0 1.0 1.0 ns
KEN# setup time 5.0 3.0 3.0 ns
KEN# hold time 1.0 1.0 1.0 ns
NA# setup time 4.5 1.7 1.7 ns
NA# hold time 1.0 1.0 1.0 ns
NMI setup time 5.0 1.7 1.7 ns
NMI hold time 1.0 1.0 1.0 ns
NMI async pulse width 2 2 2 CLK
PEN# setup time 4.8 1.7 1.7 ns
PEN# hold time 1.0 1.0 1.0 ns
R/S# setup time 5.0 1.7 1.7 ns
R/S# hold time 1.0 1.0 1.0 ns
R/S# async pulse width 2 2 2 CLK
SMI# setup time 5.0 1.7 1.7 ns
SMI# hold time 1.0 1.0 1.0 ns
SMI# async pulse width 2 2 2 CLK
STPCLK# setup time 5.0 1.7 1.7 ns
STPCLK# hold time 1.0 1.0 1.0 ns
WB/WT# setup time 4.5 1.7 1.7 ns
WB/WT# hold time 1.0 1.0 1.0 ns
RESET setup time 5.0 1.7 1.7 ns
RESET hold time 1.0 1.0 1.0 ns
RESET pulse width 15 15 15 CLK
RESET active 1.0 1.0 1.0 ms
BF2..0 setup time 1.0 1.0 1.0 ms
BF2..0 hold time 2 2 2 CLK
BRDYC# hold time 1.0 1.0 1.0 ns
BRDYC# setup time 2 2 2 CLK
BRDYC# hold time 2 2 2 CLK
FLUSH# setup time 5.0 1.7 1.7 ns
FLUSH# hold time 1.0 1.0 1.0 ns

188

US 9,229,713 B2

189 190
-continued
Clock rate
66 MHz 75 MHz 100MHz _ 133 MHz
Parameter

min max min max min max min max unit

FLUSH# setup time 2 2 2 CLK
FLUSH# hold time 2 2 2 CLK
PBREQ# flight time 0 2.0 ns
PBGNT# flight time 0 2.0 ns
PHIT# flight time 0 2.0 ns
PHITM# flight time 0 1.8 ns
A31..5 setup time 3.7 ns
A31..5 hold time 0.8 ns
D/C# setup time 4.0 ns
D/C# hold time 0.8 ns
W/R# setup time 4.0 ns
W/R# hold time 0.8 ns
CACHE# setup time 4.0 ns
CACHE# hold time 1.0 ns
LOCK# setup time 4.0 ns
LOCK# hold time 0.8 ns
SCYC setup time 4.0 ns
SCYC hold time 0.8 ns
ADS# setup time 5.8 ns
ADS}# hold time 0.8 ns
M/IO# setup time 5.8 ns
M/IO# hold time 0.8 ns
HIT# setup time 6.0 ns
HIT# hold time 1.0 ns
HITM# setup time 6.0 ns
HITM# hold time 0.7 ns
HLDA setup time 6.0 ns
HLDA hold time 0.8 ns
DPEN# valid time 10.0 CLK
DPEN# hold time 2.0 CLK
D/P# valid delay (primary) 1.0 8.0 ns
TCK frequency 25 25 MHz
TCK period 40.0 40.0 ns
TCK high time (=2 v) 14.0 14.0 ns
TCK low time (=0.8 V) 14.0 14.0 ns
TCK rise time (0.8 V->2V) 5.0 5.0 ns
TCK fall time (2 V->0.8 V) 5.0 5.0 ns
TRST# pulse width 30.0 30.0 ns
TDI setup time 5.0 5.0 ns
TDI hold time 9.0 9.0 ns
TMS setup time 5.0 5.0 ns
TMS hold time 9.0 9.0 ns
TDO valid delay 3.0 13.0 3.0 13.0 ns
TDO float delay 16.0 16.0 ns
all outputs valid delay 3.0 13.0 3.0 13.0 ns
all outputs float delay 16.0 16.0 ns
all inputs setup time 5.0 5.0 ns
all inputs hold time 9.0 9.0 ns
Bus Control Register 50 _continued
The Bus Control Register provides direct control of Emu-
lator signals, selecting output states and active input states for number control
these signals. 5 NIT active lovel
The layout of the Bus Control Register is designed to match 10 INTRa;gje :561
the assignment of signals to the Event Register. 55 11 NMI active level
12 SMT# active level
13 STPCLK# active level
14 CPUTYP active at reset
number control 15 DPEN¥# active at reset
0 Reserved 16 FLUSH# active at reset
1 A20M# active level 60 17 INIT active at reset
2 BFO active level 31...18 Reserved
3 BF1 active level 32 Bus lock
4 BF2 active level 33 Split cycle
5 BUSCHK active level 34 BPO output
6 FLUSH# active level 35 BP1 output
7 FRCMCH# active level 65 36 BP2 output
8 IGNNE# active level 37 BP3 output

US 9,229,713 B2

-continued

number control

38 FERR# output

39 IERR# output

40 PMO output

41 PM1 out ut

42 SMIACT# output
63...43 Reserved

Emulator signals

Several of the signals, A20M#, INIT, NMI, SMI#, STP-
CLK#, IGNNE# are inputs that have purposes primarily
defined by the needs of x86 processor emulation. They have
no direct purpose in the Zeus processor, other than to signal an
event, which is handled by software. Each of these signals is
an input sampled on the rising edge of each bus clock, if the
input signal matches the active level specified in the bus
control register, the corresponding bit in the event register is
set. The bit in the event register remains set even if the signal
is no longer active, until cleared by software. If the event
register bit is cleared by software, it is set again on each bus
clock that the signal is sampled active.

A20M#

A20M# (address bit 20 mask inverted), when asserted
(low), directs an x86 emulator to generate physical addresses
for which bit 20 is zero.

The A20M# bit of the bus control register selects which
level of the A20M# signal will generate an event in the
A20MH# bit of the event register. Clearing (to 0) the A20M# bit
of the bus control register will cause the A20M# bit of the
event register to be set when the A20M# signal is asserted
(low).

Asserting the A20M# signal causes the emulator to modify
all current TB mappings to produce a zero value for bit 20 of
the byte address. The A20M# bit of the bus control register is
then set (to 1) to cause the A20M# bit of the event register to
be set when the A20M# signal is released (high).

Releasing the A20M signal causes the emulator to restore
the TB mapping to the original state. The A20M# bit of the
bus control register is then cleared (to 0) again, to cause the
A20M# bit of the event register to be set when the A20M#
signal is asserted (low).

INIT

INIT (initialize) when asserted (high), directs an x86 emu-
lator to begin execution of the external ROM BIOS.

The INIT bit of the bus control register is normally set (to
1) to cause the INTIT bit of the event register to be set when the
INIT signal is asserted (high).

INTR

INTR (maskable interrupt) when asserted (high), directs
an x86 emulator to simulate a maskable interrupt by gener-
ating two locked interrupt acknowlege special cycles. Exter-
nal hardware will normally release the INTR signal between
the first and second interrupt acknowlege special cycle.

The INTR bit of the bus control register is normally set (to
1)to cause the INTR bit of the event register to be set when the
ENTR signal is asserted (high).

NMI

NMI (non-maskable interrupt) when asserted (high),
directs an x86 emulator to simulate a non-maskable interrupt.
External hardware will normally release the NMI signal.

The NMI bit of the bus control register is normally set (to
1) to cause the NMI bit of the event register to be set when the
NMI signal is asserted (high).

10

15

20

25

30

35

40

45

50

55

60

65

192

SMI#

SMI# (system management interrupt inverted) when
asserted (low), directs an x86 emulator to simulate a system
management interrupt by flushing caches and saving regis-
ters, and asserting (low) SMIACT# (system management
interrupt active inverted). External hardware will normally
release the SMI#.

The SMI# bit of the bus control register is normally cleared
(to 0) to cause the SMI# bit of the event register to be set when
the SMI# signal is asserted (low).

STPCLK#

STPCLK# (stop clock inverted) when asserted (low),
directs an x86 emulator to simulate a stop clock interrupt by
flushing caches and saving registers, and performing a stop
grant special cycle.

The STPCLK# bit of the bus control register is normally
cleared (to 0) to cause the STPCLK# bit of the event register
to be set when the STPCLK# signal is asserted (low).

Software must set (to 1) the STPCLK# bit of the bus
control register to cause the STPCLK# bit of the event register
to be set when the STPCLK# signal is released (high) to
resume execution. Software must cease producing bus opera-
tions after the stop grant special cycle. Usually, software will
use the B.HALT instruction in all threads to cease performing
operations. The processor PLL continues to operate, and the
processor must still sample INIT, INTR, RESET, NMI, SMI#
(to place them in the event register) and respond to RESET
and inquire and snoop transactions, so long as the bus clock
continues operating.

The bus clock itself cannot be stopped until the stop grant
special cycle. If the bus clock is stopped, it must stop in the
low (0) state. The bus clock must be operating at frequency for
atleast 1 ms before releasing STPCLK# or releasing RESET.
While the bus clock is stopped, the processor does not sample
inputs or responds to RESET or inquire or snoop transactions.

External hardware will normally release STPCLK# when
it is desired to resume execution. The processor should
respond to the STPCLK# bit in the event register by awaken-
ing one or more threads.

IGNNE#

IGNNE# (address bit 20 mask inverted), when asserted
(low), directs an x86 emulator to ignore numeric errors.

The IGNNE# bit of the bus control register selects which
level of the IGNNE# signal will generate an event in the
IGNNE# bit of the event register. Clearing (to 0) the IGNNE#
bit of the bus control register will cause the IGNNFE# bit of the
event register to be set when the IGNNE# signal is asserted
(low).

Asserting the IGNNE# signal causes the emulator to
modify its processing to ignore numeric errors, if suitably
enabled to do so. The IGNNE# bit of the bus control register
is then set (to 1) to cause the IGNNE# bit of the event register
to be set when the IGNNE# signal is released (high).

Releasing the IGNNE# signal causes the emulator to
restore the emulation to the original state. The IGNNE# bit of
the bus control register is then cleared (to 0) again, to cause
the IGNNE# bit of the event register to be set when the
IGNNE# signal is asserted (low).

Emulator output signals

Several of the signals, BP3 . . . BP0, FERR#, IERR#,
PM1 . . . PMO, SMIACT# are outputs that have purposes
primarity defined by the needs of x86 processor emulation.
They are driven from the bus control register that can be
written by software.

Bus snooping

Zeus support the “Socket 7” protocols for inquiry, invali-
dation and coherence of cache lines. The protocols are imple-

US 9,229,713 B2

193

mented in hardware and do not interrupt the processor as a
result of bus activity. Cache access cycles may be “stolen” for
this purpose, which may delay completion of processor
memory activity.

Definition
Definition
def SnoopPhysicaBus as
/fwait for transaction on bus or inquiry cycle
do
wait
while BRDY# =0
PS313 < Az
op <~ W/R#IW: R
cc < Cache# | PWT || PCD
enddef
Locked cycles

Locked cycles occur as a result of synchronization opera-
tions (Store-swap instructions) performed by the processor.
For x86 emulation, locked cycles also occur as a result of
setting specific memory-mapped control registers.

Locked synchronization instruction

Bus lock (LOCK#) is asserted (low) automatically as a
result of store-swap instructions that generate bus activity,
which always perform locked read-modity-write cycles on 64
bits of data. Note that store-swap instructions that are per-
formed on cache sub-blocks that are in the E or M state need
not generate bus activity.

Locked sequences of bus transactions

Bus lock (LOCK#) is also asserted (low) on subsequent bus
transactions by writing a one (1) to the bus lock bit of the bus
control register. Split cycle (SCYC) is similarly asserted
(high) if a one (1) is also written to the split cycle bit of the bus
emulation control register.

All subsequent bus transactions will be performed as a
locked sequence of transactions, asserting bus lock (LOCK#
low) and optionally split cycle (SCYC high), until zeroes (0)
are written to the bus lock and split cycle bits of the bus
control register. The next bus transaction completes the
locked sequence, releasing bus lock (LOCK# high) and split
cycle (SCYC low) at the end of the transaction. If the locked
transaction must be aborted because of bus activity such as
backoff, a lock broken event is signalled and the bus lock is
released.

Unless special care is taken, the bus transactions of all
threads occur as part of the locked sequence of transactions.
Software can do so by interrupting all other threads until the
locked sequence is completed. Software should also take case
to avoid fetching instructions during the locked sequence,
such as by executing instructions out of niche or ROM
memory. Software should also take care to avoid terminating
the sequence with event handling prior to releasing the bus
lock, such as by executing the sequence with events disabled
(other than the lock broken event).

The purpose of this facility is primarily for x86 emulation
purposes, in which we are willing to perform acts (such as
stopping all the other threads) in the name of compatibility. It
is possible to take special care in hardware to sort out the
activity of other threads, and break the lock in response to
events. In doing so, the bus unit must defer bus activity gen-
erated by other threads until the locked sequence is com-
pleted. The bus unit should inhibit event handling while the
bus is locked.

Sampled at Reset

Certain pins are sampled at reset and made available in the
event register.

10

15

25

30

35

40

50

55

60

65

CPUTYP Primary or Dual processor
PICDO[DPEN#] Dual processing enable

FLUSH#Tristate test mode
INIT Built-in self-test

Sampled per Clock
Certain pins are sampled per clock and changes are made
available in the event register.

A20M# address bit 20 mask
BF[1:0] bus frequency

BUSCHKZ# bus check
FLUSH#cache flush request
FRCMCH# functional redundancy check - not implemented on Pentium
MMX

IGNNE# ignore numeric error

INIT re-initialize pentium processor
INTR external interrupt

NMI non-maskable interrupt

R/S# run/stop

SMI# system management
STPCLK# stop clock

Bus Access

The “Socket 7” bus performs transfers of 1-8 bytes within
an octlet boundary or 32 bytes on a triclet boundary.

Transfers sized at 16 bytes (hexlet) are not available as a
single transaction, they are performed as two bus transac-
tions.

Bus transactions begin by gaining control of the bus
(TODO: not shown), and in the initial cycle, asserting ADS#,
M/IO#, A, BE#, W/R#, CACHE#, PWT, and PCD. These
signals indicate the type, size, and address of the transaction.
One or more octlets of data are returned on a read (the external
system asserts BRDY# and/or NA# and D), or accepted on a
write (TODO not shown).

The external system is permitted to affect the cacheability
and exclusivity of data returned to the processor, using the
KEN# and WB/WT# signals. Definition

def data,cen < AccessPhysicaBus(pa,size,cc,op,wd) as
// divide transfers sized between octlet and hexlet into two parts
// also divide transfers which cross octlet boundary into two parts
if (64<size<128) or ((size<64) and (size+8*pa, >64)) then
data0,cen < AccessPhysicalBus(pa,64-8*pa, g,cc,op,wd)
if cen=0 then
pal = Pag, |10
datal,cen <= AccessPhysicalBus(pal,size+8*pa, o-64,cc,op,wd)
data < datal |5, ¢ || datals; o
endif
else
ADS# < 0
M/IO# < 1
Azp 3= Pay 3
fori < 0to7
BE# < pa, o< i<pa, ot+size/8
endfor
W/R# < (op=W)
if (op=R) then
CACHE# < ~(cc = WT)
PWT <« (cc =WT)
PCD <« ~(cc = CD)
do
wait
while (BRDY# = 1) and (NA# = 1)
//Intel spec doesn’t say whether KEN# should be ignored if no CACHE#
//AMD spec says KEN# should be ignored if no CACHE#
cen < ~KEN# and (cc = WT) //cen=1 if triclet is cacheable
xen <= WB/WT# and (cc = WT) //xen=1 if triclet is exclusive
if cen then
0s <= 64%pa, 3

US 9,229,713 B2

195

-continued

datass o0 < Des.o
do
wait
while BRDY# = 1
datass,(64°0s). (64°0s) < De3.o
do
wait
while BRDY# = 1
datass ,(1280s)..(128"0s) < De3.0
do
wait
while BRDY# = 1
datass ,(1020s).(192°0s) < De3.o
else
os < 64%pa,
datags, o 0s < De3.0
endif
else
CACHE# < ~(size = 256)
PWT <« (cc =WT)
PCD <« (cc = CD)
do
wait
while (BRDY# = 1) and (NA# =1)
xen <= WB/WT# and (cc = WT)
endif
endif
flags < cen || xen
enddef

Other bus cycles

Input/Output transfers, Interrupt acknowledge and special
bus cycles (stop grant, flush acknowledge, writeback, halt,
flush, shutdown) are performed by uncached loads and stores
to a memory-mapped control region.

M/IO# D/C# W/R# CACHE# KEN# cycle

0 0 0 1 X interrupt acknowledge

0 0 1 1 x special cycles (intel pg 6-33)

0 1 0 1 X T/O read, 32-bits or less, non-
cacheable, 16-bit address

0 1 1 1 X T/O write, 32-bits or less,
non-
cacheable, 16-bit address

1 0 X X X code read (not implemented)

1 1 0 1 X non-cacheable read

1 1 0 X 1 non-cacheable read

1 1 0 0 0 cacheable read

1 1 1 1 X non-cacheable write

1 1 1 0 X cache writeback

Special cycles

An interrupt acknowlege cycle is performed by two byte
loads to the control space (dc=1), the first with a byte address
(ba) of 4 (A31...3=0, BE4#=0, BE7 ...5,3 ... 0#=1), the
second with a byte address (ba) of 0 (A31 .. .3=0, BEO#=0,
BE7 ... 1#=1). The first byte read is ignored; the second byte
contains the interrupt vector. The external system normally
releases INTR between the first and second byte load.

A shutdown special cycle is performed by a byte store to
the control space dc=1) with a byte address (ba) of
0 (A31...3=0,BE0O#=0,BE7 ... l#=1).

A flush special cycle is performed by a byte store to the
control space (dc=1) with a byte address (ba) of 1 (A31 ...
3=0, BE1#=0, BE7 . .. 2,0#=1).

A halt special cycle is performed by a byte store to the
control space (dc=1) with a byte address (ba) of 2 (A31 ...
3=0, BE2#=0, BE7 . .. 3,1#=1).

A stop grant special cycle is performed by a byte store to
the control space (dc=1) with a byte address (ba) of 0x12
(A31...3=2,BE2#=0,BE7...3,1...0#=1).

10

15

20

25

30

35

45

50

55

196

A writeback special cycle is performed by a byte store to
the control space (dc=1) with a byte address (ba) of
3 (A31...3=0,BE3#=0,BE7...4,2...0#=1).

A flush acknowledge special cycle is performed by a byte
store to the control space (dc=1) with a byte address (ba) of 4
(A31...3=0,BE4#=0,BE7...53 ... 0#=1).

A back trace message special cycle is performed by a byte
store to the control space (dc=1) with a byte address (ba) of 5
(A31...3=0,BE5#=0,BE7...6,4...0#=1).

Performing load or store operations of other sizes (doublet,
quadlet, octlet, hexlet) to the control space (dc=1) or opera-
tions with other byte address (ba) values produce bus opera-
tions which are not defined by the “Super Socket 7” specifi-
cations and have undefined effect on the system.

1/0 cycles

An input cycle is performed by a byte, doublet, or quadlet
load to the data space (dc=0), with a byte address (ba) of the
1/0 address. The address may not be aligned, and if it crosses
an octlet boundary, will be performed as two separate cycles.

An output cycle is performed by a byte, doublet, or quadlet
store to the data space (dc=0), with a byte address (ba) of the
1/0 address. The address may not be aligned, and if it crosses
an octlet boundary, will be performed as two separate cycles.

Performing load or store operations of other sizes (octlet,
hexlet) to the data space (dc=0) produce bus operations which
are not defined by the “Super Socket 7” specifications and
have undefined effect on the system.

Physical address

The other bus cycles are accessed explicitly by uncached
memory accesses to particular physical address ranges.
AppropriateLy sized load and store operations must be used
to perform the specific bus cycles required for proper opera-
tions. The dc field must equal 0 for I/O operations, and must
equal 1 for control operations. Within this address range, bus
transactions are sized no greater than 4 bytes (quadlet) and do
not cross quadlet boundaries.

The physical address of a other bus cycle data/control dc,
byte address ba is:

63 2423 1615 0
| FFFF FFEFF 0B0O 000063 24 [de | ba
40 8 16

Definition

def data <= AccskPhysicalOtherBus(pa,size,op,wd) as
// divide transfers sized between octlet and hexlet into two parts
// also divide transfers which cross octlet boundary into two parts
if (64<size=128) or ((size<64) and (size+8*pa, ,>64)) then
data0 <= AccessPhysicaOtherBus(pa,64-8*pa,_o,0p,wd)
pal < pag_4|l1[l0°
datal <= AccessPhysicaOtherBus(pa,size+8*pa, -64,0p,wd)
data < datal 5 4, || dataOg; 4
else
ADS# < 0
M/IO# < 0
D/C# < ~pag
Az 0" pays.3
fori«< 0to7
BE# < pa, o =i<pa, g+size/8
endfor
W/R# < (op=W)
CACHE# < 1
PWT < 1
PCD <1
do
wait

US 9,229,713 B2

197

-continued

while (BRDY# = 1) and (NA# = 1)
if (op=R) then
os < 64%pa,
datass o0 < De.o
endif
endif
enddef

EVENTS AND THREADS

Exceptions signal several kinds of events: (1) events that
are indicative of failure of the software or hardware, such as
arithmetic overflow or parity error, (2) events that are hidden
from the virtual process model, such as translation buffer
misses, (3) events that infrequently occur, but may require
corrective action, such as floating-point underflow. In addi-
tion, there are (4) external events that cause scheduling of a
computational process, such as clock events or completion of
a disk transfer.

Each of these types of events require the interruption of the
current flow of execution, handling of the exception or event,
and in some cases, descheduling of the current task and
rescheduling of another. The Zeus processor provides a
mechanism that is based on the multi-threaded execution
model of Mach. Mach divides the well-known UNIX process

10

25

198

model into two parts, one called a task, which encompasses
the virtual memory space, file and resource state, and the
other called a thread, which includes the program counter,
stack space, and other general register file state. The sum of a
Mach task and a Mach thread exactly equals one UNIX pro-
cess, and the Mach model allows a task to be associated with
several threads. On one processor at any one moment in time,
at least one task with one thread is running.

In the taxonomy of events described above, the cause of the
event may either be synchronous to the currently running
thread, generally types 1, 2, and 3, or asynchronous and
associated with another task and thread that is not currently
running, generally type 4.

For these events, Zeus will suspend the currently running
thread in the current task, saving a minimum of general reg-
isters, and continue execution at a new program counter. The
event handler may perform some minimal computation and
return, restoring the current threads” general registers, or save
the remaining general registers and switch to a new task or
thread context.

Facilities of the exception, memory management, and
interface systems are themselves memory mapped, in order to
provide for the manipulation of these facilities by high-level
language, compiled code, The sole exception is the general
register file itself, for which standard store and load instruc-
tions can save and restore the state.

Definition

def Thread(th) as

forever
catch, exception

endforever

enddef
Definition

if ((EventRegister and EventMask[th]) = 0) then
if ExceptionState=0 then
raise EventInterrupt
endif
endif
inst <= LoadMemoryX(ProgramCounter,ProgramCounter,32,L)
Instruction(inst)

endcatch
case exception of

EventInterrupt,
ReservedInstruction,
OperandBoundary,
AccessDisallowedByTag,
AccessDisallowedByGlobalTB,
AccessDisallowedByLocalTB,
AccessDetailRequiredByTag
AccessDetailRequiredByGlobalTB,
AccessDetailRequiredByLocalTB,
MissInGlobalTB,
MissInLocal TB,
FixedPointArithmetic,
FloatingPointArithmetic,
GatewayDisallowed:
case ExceptionState of
0;
PerforrnException(exception)
L
PerformException(SecondException)
2;
raise ThirdException
endcase
TakenBranch:
ContinuationState < (ExceptionState=0) ? 0 : ContinuationState
TakenBranchContinue:
/* nothing */
none, others:
ProgramCounter <— ProgramCounter + 4
ContinuationState < (ExceptionState=0) ? 0 : ContinuationState

endcase

def PerformException(exception) as

US 9,229,713 B2
199 200

-continued

v < (exception > 7) ? 7 : exception
t < LoadMemorv(ExceptionBase,ExceptionBase+Thread* 128+64+8*v,64,1)
if ExceptionState = 0 then
u < RegRead(3,128) || RegRead(2,128) || RegRead(1,128) || RegRead(0,128)
StoreMemory(ExceptionBase,ExceptionBase+Thread*128,512,L,u)
RegWrite(0,64,ProgramCountergs_» || PrivilegeLevel
RegWrite(1,64,ExceptionBase+Thread*128)
RegWrite(2,64,exception)
RegWrite(3,64,FailingAddress)
endif
PrivilegeLevel < t,
ProgramCounter < tg; 5 || 0%
case exception of
AccessDetailRequiredByTag,
AccessDetailRequiredByGobalTB,
AccessDetailRequiredByLocal TB:
ContinuationState <— ContinuationState + 1
others:
/* nothing */
endcase
ExceptionState <= ExceptionState + 1
enddef
Definition
def PerformAccessDetail(exception) as
if (ContinuationState = 0) or (ExceptionState = 0) then
raise exception
else
ContinuationState «<— ContinuationState - 1
endif
enddef
Definition
def BranchBack(rd,re,rb) as
¢ <= RegRead(re, 64)
if (rd = 0) or(rc = 0) or (rb = 0) then
raise ReservedInstruction
endif
a < LoadMemory(ExceptionBase,ExceptionBase+Thread*128,128,1)
if PrivilegeLevel > ¢, ,then
PrivilegeLevel < ¢,
endif
ProgramCounter < cg; 5 || 0%
ExceptionState <= 0
RegWrite(rd,128,a)
raise TakenBranchContinue

enddef
40
The following data is stored into memory at the Exception
Storage Address p 0
pe| [p!
45 64
511 384383 256255 128127 0
[rez1 | ®re1 [RE] | RE[Q | 63 21 0
128 128 128 128 pe | pl |
62 2
511 384
| RE[3] [
128 The following data replaces the original contents of
383 256 RF[3...0)]:
| RF[2] |
128 55
511 384383 256255 128127 6463 0
255 128 | FA exception | EDP | eps | pelpl |
| RF[1] | 128 128 128 64 64
128
60 511 448 447 384
127 0 |) | FA |
| RF(0] | « P
128
383 320319 280383 256261 260259 256
| 0 |0|aS|at|code|
65
64 40 8 8 8

The following data is loaded from memory at the Excep-
tion Vector Address:

US 9,229,713 B2

201
-continued

255 192 191 128
[0 | EDP |

64 64
127 64 63 21 0
| 0 | pe [pt]

64 62 2

at: access type; 0=r, 1=w, 2=x, 3=g

as: access size in bytes

TODO: add size, access type to exception data in
pseudocode.

Ephemeral Program State

Ephemeral Program State (EPS) is defined as program
state which affects the operation of certain instructions, but
which does not need to be saved and restored as part of user
state.

Because these bits are not saved and restored, the sizes and
values described here are not visible to software. The sizes
and values described here were chosen to be convenient for
the definitions in this documentation. Any mapping of these
values which does not alter the functions described may be
used in a conforming implementation. For example, either of
the EPS states maybe implemented as a thermometer-coded
vector, or the ContinuationState field may be represented with
specific values for each AccessDetailRequired exception
which an instruction execution may encounter.

There are eight bits of EPS:

bit# Name Meaning

1.0 ExceptionState 0: Normal processing. Asynchronous events and
Synchronous exceptions enabled.

1: Event/Exception handling: Synchronous
exceptions cause SecondException, Asynchro-
nous

events are masked.

2: Second exception handling: Synchronous
exceptions cause a machine check. Asynchronous
events are masked,

3: illegal state

This field is incremented by handling an event or
exception, and cleared by the Branch Back
instruction.

Continuation state for AccessDetailRequired
exceptions. A value of zero enables all exceptions
of this kind. The value is increased by one for
each AccessDetailRequired exception handled,
for which that many AccessDetailRequired
exceptions are continued past (ignored) on re-
execution in normal processing (ex = 0). Any
other

kind of exception, or the completion of an
instruction under normal processing causes the
continuation state to be reset to zero. State does

not
need to be saved on context switch.

7.2 ContinuationState

The ContinuationState bits are ephemeral because if they
are cleared as a result of a context switch, the associated
exceptions can happen over again. The AccessDetail excep-
tion handlers will then set the bits again, as they were before
the context switch. In the case where an AccessDetail excep-
tion handler must indicate an error, care must be taken to
perform some instruction at the target of the Branch Back
instruction by the exception handler is exited that will operate
properly with ContinuationState=0.

The ExceptionState bits are ephemeral because they are
explicitly set by event handling and cleared by the termina-
tion of event handling, including event handling that results in
a context switch.

202

Events Register

Events are single-bit messages used to communicate the
occurrence of events between threads and interface devices.

63 0

event

64
10

The Event Register appears at several locations in memory,
with slightly different side effects on read and write opera-
tions.

15
offset side effect on read side effect on write
0 none: return event register contents normal: write data into event
20 register
512 return zero value (so read-modify- one bits in data set (to one)
write for byte/doublet/ quadlet store corresponding event register
works) bits
768 return zero value (so read-modify- one bits in data clear (to zero)
write for byte/doublet/ quadlet store corresponding event register
25 works) bits
Physical address
5o The Event Register appears at three different locations, for
which three functions of the Event Register are performed as
described above. The physical address of an Event Register
for function £, byte b is:
35
63 2423 10987 320
FFFF FFFF 0F00 0000g; 24 0 [r] o]y
40 14 2 5 3
40
Definition

def data <— AccessPhysicalEventRegister(pa,op,wdata) as
45 f<pag g
if (pazs_10="0) and (pa7 4 =0) and (f= 1) then
case T op of

O R:
data < 0%* || EventRegister
2R, 3| R:
data < O
30 0w
EventRegister «<— wdatag; o
2| W
EventRegister «<— EventRegister or wdatag; o
3| W
EventRegister «<— EventRegister and ~wdatag; o
55 endcase
else
data < 0
endif
enddef
60
Events:

The table below shows the events and their corresponding
event number. The priority of these events is soft, in that
dispatching from the event register is controlled by software.

Using the E.LOGMOST.U instruction is useful for priori-
tizing these events.

US 9,229,713 B2

203 204
-continued
number event
parameter
0 Clock . number exception (general register 3)
1 A20M# active
2 BFO active 5 12 MissInLocalTB local address
3 BFl active 13 FixedPointArithmetic instruction
4 BF2active 14 FloatingPointArithmetic instruction
5 BUSCHKH¥ active 15 GatewayDisallowed none
6 FLUSH# active 16
7 FRCMCH# active 17
8 IGNNE# active 10 18
9 INIT active 19
10 INTR active 20
11 NMI active 71
12 SM# active 2
13 STPCLK# active 23
14 CPUTYP active at reset (Primary vs Dual processor) 15 24
15 DPEN#active at reset (Dual processing enable - driven low by dual 75
processor) TakenBranch
16 ~ FLUSH# active at reset (tristate test mode) TakenBranchContinue
17 INIT active at reset
18 Bus lock broken
19 BRYRCH active at reset (drive strength) 2 GlobalTBMiss Handler
2 The GlobalTBMiss exception occurs when a load, store, or
instruction fetch is attempted while none of the GlobalTB
Event Mask

The Event Mask (one per thread) control whether each of
the events described above is permitted to cause an exception

entries contain a matching virtual address. The Zeus proces-
sor uses a fast software-based exception handler to fill in a
missing GlobalTB entry.

There are several possible ways that software may main-
tain page tables. For purposes of this discussion, it is assumed
that a virtual page table is maintained, in which 128 bit GTB
values for each 4 k byte page in a linear table which is itselfin
virtual memory. By maintaining the page table in virtual
memory, very large virtual spaces may be managed without
keeping a large amount of physical memory dedicated to page

Because the page table is kept in virtual memory, it is
possible that a valid reference may cause a second GTBMiss
exception if the virtual address that contains the page table is
not present in the GTB. The processor is designed to permit a
second exception to occur within an exception handler, caus-
ing a branch to the SecondException handler. However, to
simplify the hardware involved, a SecondException excep-
tion saves no specific information about the exception—han-
dling depends on keeping enough relevant information in
general registers to recover from the second exception.

Zeus is a multithreaded processor, which creates some
special considerations in the exception handler. Unlike a
single-threaded processor, it is possible that multiple threads
may nearly simultaneously reference the same page and
invoke two or more GTB misses, and the fully-associative
construction of the GTB requires that there be no more than
one matching entry for each global virtual address. Zeus
provides a search-and-insert operation (GTBUpdateFill) to
simplify the handling of the GTB. This operation also uses
hardware GTB pointer registers to select GTB entries for
replacement in FIFO priority.

A further problem is that software may need to modify the
protection information contained in the GTB, such as to
remove read and/or write access to a page in order to infer
which parts of memory are in use, or to remove pages from a
task. These modifications may occur concurrently with the
GTBMiss handler, so software must take care to properly
synchronize these operations. Zeus provides a search-and-
update operation (GTBUpdate) to simplify updating GTB

When a large number of page table entries must be
changed, noting the limited capacity of the GTB can reduce

25
in the corresponding thread.

Physical address

There are as many Event Masks as threads. The physical
address of an Event Mask for thread th, byte b is:

30
63 2423 1918 320
| FFFF FFFF 0E00 000043 24 [] 0 [v]
w0 B 1 3 tables.
Definition 35
def data <= AccessPhysicalEventMask(pa,op,wdata) as
th < pa23..19
if (th <T) and (pal8..4 = 0) then
case op of
R: 40
data < 064 || EventMask|th]
EventMask[th] < wdata63..0
endcase
else
data < 0 45
endif
enddef

Exceptions:

The table below shows the exceptions, the corresponding 50
exception number, and the parameter supplied by the excep-
tion handler in general register 3.

parameter 55

number exception (general register 3)

0 EventInterrupt
1 MissInGlobalTB global address
2 AccessDetailRequiredByTag global address
3 AccessDetailRequiredByGlobalTB global address 60
4 AccessDetailRequiredByLocal TB local address
5
6 SecondException
7 ReservedInstruction instruction entries.
8 OperandBoundary instruction
9 AccessDisallowedByTag global address
10 AccessDisallowedByGlobalTB global address 65
11 AccessDisallowedByLocalTB local address

the work. Reading the GTB can be less work than matching
all modified entries against the GTB contents. To facilititate

US 9,229,713 B2

205

this, Zeus also provides read access to the hardware GTB
pointers to further permit scanning the GTB for entries which
have been replaced since a previous scan. GTB pointer wrap-
around is also logged, so it can be determined that the entire
GTB needs to be scanned if all entries have been replaced
since a previous scan.

In the code below, offsets from rl are used with the follow-
ing data structure

Offset Meaning
0...15 10 save
16...32 rl save
32...47 12 save

48 ...63 13 save

512 527 14 save

528 ...535 BasePT
536...543 GTBUpdateFill
544...559 DummyPT
560...639 availble 96 bytes

BasePT=512+16

GTBUpdateFill=BasePT +8

DummyPT=GTBUpdateFill+8

On a GTBMiss, the handler retrieves a base address for the
virtual page table and constructs an index by shifting away the
page offset bits ofthe virtual address. A single 128-bit indexed
load retrieves the new GTB entry directly (except that a
virtual page table miss causes a second exception, handled
below). A single 128-bit store to the GTBUpdateFill location
places the entry into the GTB, after checking to ensure that a
concurrent handler has not already placed the entry into the
GTB.

Code for GlobaL.TBMiss:

li64la r2=r1,BasePT //base address for page table
ashri B3@l12 //4k pages
1128la r3=r2,13 //retrieve page table, SecExc if bad
va
2; libd4la 12=r1,GTBUpdateFill //pointer to GTB update location
sil28la 1r3,r2,0 //save new TB entry
li128la r3=rl1,48 //restore 13
li128la r2=rl1,32 //restore 12
li128la rl=rl,16 //restore rl
bback //restore 10 and return

A second exception occurs on a virtual page table miss. It
is possible to service such a page table miss directly, however,
the page offset bits of the virtual address have been shifted
away, and have been lost. These bits can be recovered: in such
a case, a dummy GTB entry is constructed, which will cause
an exception other than GTBMiss upon returning. A re-ex-
ecution of the offending code will then invoke a more exten-
sive handler, making the full virtual address available.

For purposes of this example, it is assumed that checking
the contents of r2 against the contents of BasePT is a good
way to ensure that the second exception handler was entered
from the GlobalTBMiss handler.

10

15

20

25

30

35

40

45

50

55

206

Exceptions in detail

There are no special registers to indicate details about the
exception, such as the virtual address at which an access was
attempted, or the operands of a floating-point operation that
results in an exception. Instead, this information is available
via general registers or registers stored in memory.

When a synchronous exception or asynchronous event
occurs, the original contents of general registers 0 . .. 3 are
saved in memory and replaced with (0) program counter,
privilege level, and ephemeral program state, (1) event data
pointer, (2) exception code, and (3) when applicable, failing
address or instruction. A new program counter and privilege
level is loaded from memory and execution begins at the new
address. After handling the exception and restoring all but one
general register, a branch-back instruction restores the final
general register and resumes execution.

During exception handling, any asynchronous events are
kept pending until a BranchBack instruction is performed. By
this mechanism, we can handle exceptions and events one at
a time, without the need to interrupt and stack exceptions.
Software should take care to avoid keeping the handling of
asynchronous events pending for too long.

When a second exception occurs in a thread which is han-
dling an exception, all the above operations occur, except for
the saving and replacing of general registers 0 . . . 3 in
memory. A distinct exception code SecondException
replaces the normal exception code. By this mechanism, fast
exception handler for GlobalTBMiss can be written, in which
a second GlobalTBMiss or FixedPointOverflow exception
may safely occur.

When a third exception occurs in a thread which is han-
dling an exception, an immediate transfer of control occurs to
the machine check vector address, with information about the
exception available in the machine check cause field of the
status register. The transfer of control may overwrite state that
may be necessary to recover from the exception; the intent is
to provide a satisfactory post-mortem indication of the char-
acteristics of the failure.

This section describes in detail the conditions under which
exceptions occur, the parameters passed to the exception han-
dler, and the handling of the result of the procedure.

Reserved Instruction

The Reservedlnstruction exception occurs when an
instruction code which is reserved for future definition as part
of the Zeus architecture is executed, or when an instruction
code which is specified by the architecture, but not imple-
mented is executed.

General register 3 contains the 32-bit instruction.

Operand Boundary

This exception occurs when a load, store, branch, or gate-
way refers to an aligned memory operand with an improperly
aligned address, or if architecture description parameter
LB=1, may also occur if the add or increment of the base
general register or program counter which generates the
address changes the unmasked upper 16 bits of the local
address. This exception also occurs when a wide operand

Code for SecondException:

si128la 14,r1,512 //save 14

li64la r4=r1,BasePT //base address for page table

bne 12,14,1f //did we lose at page table load?

li128la r2=r1,DummyPT //dummy page table, shifted left 64-12 bits
xshlmil28 r3@r2,64+12 //combine page number with dummy entry
li128la 14=r1,512 //restore r4

b 2b

//fall back into GTB Miss handler

US 9,229,713 B2

207

instruction refers to wide operand with an improperly aligned
address or size or shape that exceeds the boundaries of the
architecture or implementation. This exception also occurs
when the element size or element type specification depends
onthe value of a register parameter and the value of parameter
is not supported in the architecture or implementation or not
consistent with other specified values.

General register 3 contains the 32-bit instruction.

Access disallowed by tag

This exception occurs when a read (load), write (store),
execute, or gateway attempts to access a virtual address for
which the matching cache tag entry does not permit this
access.

General register 3 contains the global address to which the
access was attempted.

Access detail required by tag

This exception occurs when a read (load), write (store), or
execute attempts to access a virtual address for which the
matching virtual cache entry would permit this access but the
detail bit is set.

General register 3 contains the global address to which the
access was attempted.

The exception handler should determine accessibility. If
the access should be allowed, the continuepastdetail bit is set
and execution returns. Upon return, execution is restarted and
the access will be retried. Even if the detail bit is set in the
matching virtual cache entry, access will be permitted.

Access disallowed by global TB

This exception occurs when a read (load), write (store),
execute, or gateway attempts to access a virtual address for
which the matching global TB entry does not permit this
access.

General register 3 contains the global address to which the
access was attempted.

The exception handler should determine accessibility,
modify the virtual memory state if desired, and return if the
access should be allowed. Upon return, execution is restarted
and the access will be retried.

Access detail required by global TB

This exception occurs when a read (load), write (store),
execute, or gateway attempts to access a virtual address for
which the matching global TB entry would permit this access,
but the detail bit in the global TB entry is set.

General register 3 contains the global address to which the
access was attempted.

The exception handler should determine accessibility and
return if the access should be allowed. Upon return, execution
is restarted and the access will be allowed. If the access is not
to be allowed, the handler should not return.

Global TB miss

This exception occurs when a read (load), write (store),
execute, or gateway attempts to access a virtual address for
which no global TB entry matches.

General register 3 contains the global address to which the
access was attempted.

The exception handler should load a global TB entry that
defines the translation and protection for this address. Upon
return, execution is restarted and the global TB access will be
attempted again.

Access disallowed by local TB

This exception occurs when a read (load, write (store),
execute, or gateway attempts to access a virtual address for
which the matching local TB entry does not permit this
access.

General register 3 contains the local address to which the
access was attempted.

10

15

20

25

30

35

40

45

50

55

60

65

208

The exception handler should determine accessibility,
modify the virtual memory state if desired, and return if the
access should be allowed. Upon return, execution is restarted
and the access will be retried.

Access detail required by local TB

This exception occurs when a read (load), write (store),
execute, or gateway attempts to access a virtual address for
which the matching local TB entry would permit this access,
but the detail bit in the local TB entry is set.

General register 3 contains the local address to which the
access was attempted.

The exception handler should determine accessibility and
return if the access should be allowed. Upon return, execution
is restarted and the access will be allowed. If the access is not
to be allowed, the handler should not return.

Local TB miss

This exception occurs when a read (load), write (store),
execute, or gateway attempts to access a virtual address for
which no local TB entry matches.

General register 3 contains the local address to which the
access was attempted.

The exception handler should load a local TB entry that
defines the translation and protection for this address. Upon
return, execution is restarted and the local TB access will be
attempted again.

Floating-point arithmetic

General register 3 contains the 32-bit instruction.

The address of the instruction that was the cause of the
exception is passed as the contents of general register 0. The
exception handler should attempt to perform the function
specified in the instruction and service any exceptional con-
ditions that occur.

Fixed-point arithmetic

This exception occurs when an arithmetic operation for
which overflow checking has been specified produces a result
which is not accurately representable in the destination for-
mat. This exception also occurs when an operation for which
parameters are specified in register operands encounters
parameters which cannot be performed because the values
exceed a boundary condition specified by the architecture.

General register 3 contains the 32-bit instruction.

The address of the instruction which was the cause of the
exception is passed as the contents of general register 0. The
exception handler should attempt to perform the function
specified in the instruction and service any exceptional con-
ditions that occur.

RESET AND ERROR RECOVERY

Certain external and internal events cause the processor to
invoke reset or error recovery operations. These operations
consist of a full or partial reset of critical machine state,
including initialization of the threads to begin fetching
instructions from the start vector address. Software may
determine the nature of the reset or error by reading the value
of the control register, in which finding the reset bit set (1)
indicates that a reset has occurred, and finding both the reset
bit cleared (0) indicates that a machine check has occurred.
When either a reset or machine check has been indicated, the
contents of the status register contain more detailed informa-
tion on the cause.

Definition
def PerformMachineCheck(cause) as
ResetVirtualMemory()

US 9,229,713 B2

209

-continued

ProgramCounter <— StartVectorAddress
PrivilegeLevel < 3
StatusRegister <= cause

enddef

Reset

A reset may be caused by a power-on reset, a bus reset, a
write of the control register sets the reset bit, or internally
detected errors including meltdown detection, and double
check.

A reset causes the processor to set the configuration to
minimum power and low clock speed, note the cause of the
reset in the status register, stabilize the phase locked loops,
disable the MMU from the control register, and initialize a all
threads to begin execution at the start vector address.

Other system state is left undefined by reset and must be
explicitly initialized by software; this explicitly includes the
thread register state. LTB and GTB state, superspring state,
and external interface devices. The code at the start vector
address is responsible for initializing these remaining system
facilities, and reading further bootstrap code from an external
ROM.

Power-on Reset

A reset occurs upon initial power-on. The cause of the reset
is noted by initializing the Status Register and other registers
to the reset values noted below.

Bus Reset

A reset occurs upon observing that the RESET signal has
been at active, The cause of the reset is noted by initializing
the Status Register and other registers to the reset values noted
below.

Control Register Reset

A reset occurs upon writing a one to the reset bit of the
Control Register. The cause ofthe reset is noted by initializing
the Status Register and other registers to the reset values noted
below.

Meltdown Detected Reset

A reset occurs if the temperature is above the threshold set
by the meltdown margin field of the configuration register.
The cause of the reset is noted by setting the meltdown
detected bit of the Status Register.

Double Check Reset

A reset occurs if a second machine check occurs that pre-
vents recovery from the first machine check. Specifically, the
occurrence of an exception in event thread, watchdog timer
error, or bus error while any machine check cause bit is still
set in the Status Register results in a double machine check
reset. The cause of the reset is noted by setting the double
check bit of the Status Register.

Machine Check

Detected hardware errors, such as communications errors
in the bus, a watchdog timeout error, or internal cache parity
errors, invoke a machine check. A machine check will disable
the MMU, to translate all local virtual addresses to equal
physical addresses, note the cause of the exception in the
Status Register, and transfer control of the all threads to the
start vector address. This action is similar to that of a reset, but
differs in that the configuration settings, and thread state are
preserved.

Recovery from machine checks depends on the severity of
the error and the potential loss of information as a direct cause
of the error. The start vector address is designed to reach
internal ROM memory, so that operation of machine check
diagnostic and recovery code need not depend on proper
operation or contents of any external device. The program

10

15

20

25

30

35

40

45

50

55

60

65

210

counter and general register file state of the thread prior to the
machine check is lost (except for the portion of the program
counter saved in the Status Register), so diagnostic and recov-
ery code must not assume that the general register file state is
indicative of the prior operating state of the thread. The state
of the thread is frozen similarly to that of an exception.

Machine check diagnostic code determines the cause of the
machine check from the processor’s Status Register, and as
required, the status and other registers of external bus devices.

Recovery code will generally consume enough time that
real-time interface performance targets may have been
missed. Consequently, the machine check recovery software
may need to repair further damage, such as interface buffer
underruns and overruns as may have occurred during the
intervening time.

This final recovery code, which re-initializes the state of
the interface system and recovers a functional event thread
state, may return to using the complete machine resources, as
the condition which caused the machine check will have been
resolved.

The following table lists the causes of machine check
errors.

Parity or uncorrectable error in on-chip cache
Parity or communications error in system bus
Event Thread exception

Watchdog timer

Parity or Uncorrectable Error in Cache

When a parity or uncorrectable error occurs in an on-chip
cache, such an error is generally non-recoverable. These
errors are non-recoverable because the data in such caches
may reside anywhere in memory, and because the data in such
caches may be the only up-to-date copy of that memory
contents. Consequently, the entire contents of the memory
store is lost, and the severity of the error is high enough to
consider such a condition to be a system failure.

The machine check provides an opportunity to report such
an error before shutting down a system for repairs.

There are specific means by which a system may recover
from such an error without failure, such as by restarting from
a system-level checkpoint, from which a consistent memory
state can be recovered.

Parity or Communications Error in Bus

When a parity or communications error occurs in the sys-
tem bus, such an error may be partially recoverable.

Bits corresponding to the affected bus operation are set in
the processor’s Status Register. Recovery software should
determine which devices are affected, by querying the Status
Register of each device on the affected MediaChannel chan-
nels.

A bus timeout may result from normal self-configuration
activities.

If the error is simply a communications error, resetting
appropriate devices and restarting tasks may recover from the
error. Read and write transactions may have been underway at
the time of a machine check and may or may not be reflected
in the current system state.

Ifthe error is from a parity error in memory, the contents of
the affected area of memory is lost, and consequently the
tasks associated with that memory must generally be aborted,
orresumed from a task-level checkpoint. If the contents of the
affected memory can be recovered from mass storage, a com-
plete recovery is possible.

US 9,229,713 B2

If the affected memory is that of a critical part of the Definition
operating system, such a condition is considered a system
failure, unless recovery can be accomplished from a system-
level checkpoint def StartProcessor as
p : 5 forever
Watchdog Timeout Error catch check
. o EnableWatchdog <= 0
A watchdog timeout error indicates a general software or fork RunClock
hardware failure. Such an error is generally treated as non- ControlRegisters, <= 0
forth < 0 to T-1
recoverable and fatal. ProgramCounter[th] < OXxFFFF FFFF FFFF FFFC
Event Thread Exception 10 PrivilegeLevel[th] <= 3
. fork Thread(th)
When an event thread suffers an exception, the cause of the endfor
exception and a portion of the virtual address at which the endcatch
exception occurred are noted in the Status Register. Because glrltﬁuicolotsz_ .
under normal circumstances, the event thread should be ;5 kill Thread(th)
designed not to encounter exceptions, such exceptions are endfor
treated as non-recoverable, fatal errors. PerformMachineCheek(check)
endforever
Reset state enddef
. def PerformMachineCheck(check) as
A reset or machine check causes the Zeus processor to 2 case check of
stabilize the phase locked loops, disable the local and global ClockWatchdog:
TB, to translate all local virtual addresses to equal physical CacheError:
e 1. . . ThirdException:
addresses, and initialize all threads to begin execution at the endease
start vector address. enddef
Start Address 25
The start address is used to initialize the threads with a Interngl ROM Code e
- Zeus internal ROM code performs reset initialization of
program counter upon a reset, or machine check. These . ; .
£ such initializati be differentiated by th on-chip resources, including the LZC and LOC, followed by
causes ol such initialization can be ditierentiated by the con- self-testing. The BIOS ROM should be scanned for a special
tents of the Status Register. 30 prefix that indicates that Zeus native code is present in the
The start address is a virtual address which, when “trans- ROM, in which case the ROM code is executed directly,
lated” by the local TB and global TB to a physical address, is otherwise execution of a BIOS-level x86 emulator is begun.
desigqed to access the .intfzrnal ROM code. The internal ROM MEMORY AND DEVICES
space is chosen to minimize the number of internal resources
and interfaces that must be operated to begin execution or 35 Physical Memory Map
recover from a machine check. Zeus defines a 64-bit physical address, but while residing
in a S7 pin-out, can address a maximum of 4 Gb of main
memory. In other packages the core Zeus design can provide
Virtual/physical address description up to 64-bit external physical address spaces. Bit 63 ... 32 of
R ——— oot 40 the physical address distinguishes between internal (on-chip)
* start vector address physical addresses, where bits 63 . . . 32=FFFFFFFF, and
external (off-chip) physical addresses, where bits 63 . . .
32=FFFFFFFF.
Address range bytes Meaning
0000 0000 0000 0000...0000 0000 FFFF FFFF 4G External Memory
0000 0001 0000 0000...FFFF FFFE FFFF FFFF 16E - 8G External Memory expansion
FFFF FFFF 0000 0000...FFFF FFFF 0002 OFFF 128K +4K Level One Cache
FFFF FFFF 0002 1000...FFFF FFFF O8FF FFFF 144M - 132K Level One Cache expansion
FFFF FFFF 0900 0000...FFFF FFFF 0900 007F 128 Level One Cache redundancy
FFFF FFFF 0900 0080...FFFF FFFF 09FF FFFF 16M - 128 LOC redundancy expansion
FFFF FFFF 0A00 0000 +t*2' +e*16 § * T * 2LE LTB thread t entry e
FFFF FFFF 0A00 0000...FFFF FFFF OAFF FFFF §* T* 2LF LTB max 8 * T * 22 = 16M
bytes
FFFF FFFF 0B0O 0000...FFFF FFFF OBFF FFFF 16M Special Bus Operations
FFFF FFFF 0C00 0000 +ts or* 2+ T4e* 16 T4+ GE-GT GTB thread t entry e
FFFF FFFF 0C00 0000...FFFF FFFF OCFF FFFF T2+ -7 GTBmax 2°*4+ 13 = 16M
bytes
FFFF FFFF 0000 0000 +ts5 g *21%+ 97 16 * T * 2767 GTBUpdate thread t
FFFF FFFF 0000 0100 +t5 gp*2°2+67 16*T* 2767 GTBUpdateFill thread t
FFFF FFFF 0000 0200 +t5 gp*2°2+67 g*T* 2767 GTBLast thread t
FFFF FFFF 0000 0300 +ts g *219+ 97 g * T * 2767 GTBFirst thread t
FFFF FFFF OE00 0400 +ts g *219+ 97 g * T * 2767 GTBBump thread t
FFFF FFFF QE00 0000 + t*219 8T Fvent Mask thread t
FFFF FFFF 0F00 0000...FFFF FFFF 0F00 0007 8 Event Register
FFFF FFFF O0F00 0008...FFFF FFFF 0F00 OOFF 256 -8 Reserved
FFFF FFFF 0F00 0100...FFFF FFFF 0F00 0107
FFFF FFFF 0F00 0108...FFFF FFFF 0F00 O1FF 256 -8 Reserved
FFFF FFFF 0F00 0200...FFFF FFFF 0F00 0207 8 Event Register bit set
FFFF FFFF O0F00 0208...FFFF FFFF 0F00 O02FF 256 -8 Reserved

US 9,229,713 B2

213 214
-continued
Address range bytes Meaning
FFFF FFFF OF00 0300...FFFF FFFF OFO0 0307 8 Event Register bit clear
FFFF FFFF OF00 0308...FFFF FFFF OF00 O3FF 256 -8 Reserved
FFFF FFFF OF00 0400...FFFF FFFF OFO0 0407 8 Clock Cycle
FFFF FFFF OF00 0408...FFFF FFFF OF00 O04FF 256 -8 Reserved
FFFF FFFF OF00 0500...FFFF FFFF OFO0 0507 8 Thread
FFFF FFFF OF00 0508...FFFF FFFF OF00 OSFF 256 -8 Reserved
FFFF FFFF OF00 0600...FFFF FFFF OFO0 0607 8 Clock Event
FFFF FFFF OF00 0608...FFFF FFFF OF00 O06FF 256 -8 Reserved
FFFF FFFF OF00 0700...FFFF FFFF OFO0 0707 8 Clock Watchdog
FFFF FFFF OF00 0708...FFFF FFFF OF00 O7FF 256 -8 Reserved
FFFF FFFF OF00 0800...FFFF FFFF OFO0 0807 8 Tally Counter O
FFFF FFFF OF00 0808...FFFF FFFF OFPO O8FF 256 -8 Reserved
FFFF FFFF OF00 0900...FFFF FFFF OFO0 0907 g Tally Control O
FFFF FFFF OF00 0908...FFFF FFFF OF00 O9FF 256 -8 Reserved
FFFF FFFF OF00 OAOQO...FFFF FFFF OFO0 0A07 8 Tally Counter 1
FFFF FFFF OF00 OAOS8...FFFF FFFF OF00 OAFF 256 -8 Reserved
FFFF FFFF OF00 0BOO...FFFF FFFF OFO0 0BO7 8 Tally Control 1
FFFF FFFF OF00 O0BO8...FFFF FFFF OF00 OBFF 256 -8 Reserved
FFFF FFFF OF00 0CO00...FFFF FFFF OFO0 0CO7 8 Exception Base
FFFF FFFF OF00 0CO8...FFFF FFFF OFO0 OCFF 256-B Reserved
FFFF FFFF OF00 ODOO...FFFF FFFF OFO0 0DO07 8 Bus Control Register
FFFF FFFF OF00 ODOS8...FFFF FFFF OF00 ODFF 256 -8 Reserved
FFFF FFFF OF00 OEOO...FFFF FFFF OFO0 OE07 8 Status Register
FFFF FFFF OF00 OEO08...FFFF FFFF OF00 OEFF 256 -8 Reserved
FFFF FFFF OF00 OFO00...FFFF FFFF OFO0 O0OF07 8 Control Register
FFFF FFFF OF00 OFO08...FFFF FFFF FEFF FFFF 4G - 256M - 3848 Reserved
FFFF FFFF FFOO 0000...FFFF FFFF FFFE FFFF 16M - 64k Internal ROM expansion
FFFF FFFF FFFF 0000...FFFF FFFF FFFF FFFF 64K Internal ROM
The suffixes in the table above have the following mean-
ings:
letter name 2* “binary” 107 “decimal”
b bits
B bytes 01 01
K kilo 10 1024 3 1000
M mega 20 1048576 6 1000 000
G gigs 30 1073 741 824 9 1000 000 000
T tera 40 1099 511 627 776 12 1 000 000 000 000
P peta 50 1125 899 906 842 624 15 1 000 000 000 000 000
E exa 60 1152921 504 606 846 976 18 1 000 000 000 000 000 000
. 45
Definition -continued
elseif (op=W) and (size<128) then
def data < ReadPhysical (pa,size) as //this code should change to check pa4..0=0 and size<sizeofreg
data,flags < AccessPhysical(pa,size, WA,R,0) rdata <= AccessPhysicalDevices(pa and ~15,128,R,0)
enddef 50 bs < 8*(pa and 15)
def WritePhysical(pa,size,wdata) as be < bs + size
data,flags < AccessPhysical(pa,size, WA, W,wdata) hdata < rdata 55 ,, || wdata,, |, [|rdata,. | o
enddef data <= AccessPhysicalDevices(pa and ~15,128 W, hdata)
def data,flags < AccessPhysical(pa,size,cc,op,wdata) as elseif (0x0000000100000000 < pa = OXFFFFFFFEFFFFFFFF) then
if (0x0000000000000000 < pa = 0x00000000FFFFFFFF) then data <= 0
data,flags < AccessPhysicalBus(pa,size,cc,op,wdata) 55 elseif (OXFFFFFFFF00000000 = pa = OXFFFFFFFFO8FFFFEF) then
else data,<— AccessPhysicalLOC(pa,op,wdata)
data < AccessPhyiscalDevices(pasize,op,wdata) elseif (OXFFFFFFFF09000000 < pa s OXFFFFFFFFO9FFFFFF) then
flags < 1 data <= AccessPhysical LOCRedundancy(pa,op,wdata)
. elseif (OXFFFFFFFFOA000000 = pa <= OXFFFFFFFFOAFFFFFF) then
endif .
cnddef déllta < AccessPhysical LTB(pa,op,wdata)
. . . elseif (OXFFFFFFFFO0000000 =< pa = OxFFFFFFFFOCFFFFFF) then
def data <= AccessPhysicalDevices(pa,size,op,wdata) as 60 data < AccessPhysical GTB
o ysical (pa,op,wdata)
if (size=256) then , elseif (OXFFFFEFFFOD000000 < pa < OXFFFFFFFFODFFFFFF) then
data0 < AccessPhysicalDevices(pa,128.op.wdatal27..0) data « AccessPhysical GTBRegisters(pa,op,wdata)
datal < AccessPhysicalDevices(pa+16,128.0p.wdata255..128) elseif (OXFFFFFFFFOE000000 < pa < OXFFFFFFFFOEFFFFFF) then
data < datal || data0 data < AccessPhysicalEventMask(pa,op,wdata)
elseif (OXFFFFFFFFOB000000 = pa < OxFFFFFFFFOBFFFFFF) then elseif (OXFFFFFFFFOF000000 = pa < OXFFFFFFFFOFFFFFFF) then
//don’t perform RMW on this region 65 data <= AccessPhysicalSpecialRegisters(pa,op,wdata)

data <= AccessPhysicalOtherBus(pa,size,op,wdata)

elseif (OXFFFFFFFF10000000 = pa = OXFFFFFFFFFEFFFFFF) then

US 9,229,713 B2

215

-continued

data < 0
elseif (OXFFFFFFFFFFO00000 = pa < OxFFFFFFFFFFFFFFFF) then
data <= AccessPhysical ROM(pa,op,wdata)
endif
enddef
def data <= AccessPhysicalSpecialRegisters(pa,op,wdata) as
if (pa; o= 0x10) then
data < 0
elseif (OXFFFFFFFFOF000000 = pa < OXFFFFFFFFOFO003FF) then
data <= AccessPhysicalEventRegister(pa,op,wdata)
elseif (OXFFFFFFFFOF000500 < pa < OxFFFFFFFFOFO005FF) then
data <= AccessPhysicalThread(pa,op,wdata)
elseif (OXFFFFFFFFOF000400 = pa < OxFFFFFFFFOFO007FF) then
data,<— AccessPhysicalClock(pa,op,wdata)
elseif (OXFFFFFFFFOF000800 = pa < OXFFFFFFFFOFO00BFF) then
data,<— AccessPhysicalTally(pa op wdata)
elseif (OXFFFFFFFFOFO00CO0 = pa < OXFFFFFFFFOFO00CFF) then
data,<— AccessPhysicalExceptionBase(pa,op,wdata)
elseif (OXFFFFFFFFOFO00DO00 < pa = OXFFFFFFFFOFOO0DFF) then
data,<— AccessPhysicalBusControl(pa,op,wdata)
elseif (OXFFFFFFFFOFOO0EQO = pa < OXFFFFFFFFOFO00EFF) then
data,<— AccessPhysicalStatus(pa,op,wdata)
elseif (OXFFFFFFFFOFO00FO0 = pa <= OxFFFFFFFFOFO00FFF) then
data,<— AccessPhysicalControl(pa,op,wdata)
endif
enddef

Architecture Description Register

The last hexlet of the internal ROM contains data that
describes implementation-dependent choices within the
architecture specification. The last quadlet of the internal

10

15

20

25

216

The table below indicates the detailed layout of the Archi-
tecture Description Register.

field
bits name value range interpretation
127...96 bi Contains a branch instruction for
start bootstrap from internal ROM
95...23 0 0 0 reserved
22...21 G@GT 1 0...3 log, threads which share a global
B
20...17 GE 7 0...15 log, entries in global TB
16 LB 1 0...1 local TB based on base register
15...14 LE 1 0...3 log,entries in local TB (per
thread)
13 CT 1 0...1 dedicated tags in first-level cache
12...10 CS 2 0...7 log, cache blocks in first-level
cache
set
9...5 CE 9 0...31 log, cache blocks in first-level
cache
4...0 T 4 1...31 number of execution threads

The architecture description register contains a machine-
readable version of the architecture framework parameters: T,
CE, CS, CT, LE, GE, and GT described in the Architectural
Framework section previously presented.

Status Register

The status register is a 64-bit register with both read and
write access, though the only legal value which may be writ-
ten is a zero, to clear the register. The result of writing a
non-zero value is not specified.

value range interpretation

bits field name

63 power-on

62 internal reset

61 bus reset

60 double check

59 meltdown

58...56 0

55 event exception

54 watchdog
timeout

53 bus error

52 cache error

51 v error

50...48 0

47 ...32 machine check
detail

31...0 machine check

program counter

1 0...1 This bit is set when a power-on reset has caused a
reset.

0 0...1 This bit is set when writing to the control register
caused a reset.

0 0...1 This bit is set when a bus reset has caused a reset.

0 0...1 This bit is set when a double machine check has
caused a reset.

0 0...1 This bit is set when the meltdown detector has
caused a reset.

0% 0 Reserved for other machine check causes.

0 0...1 This bit is set when an exception in event thread
has caused a machine check.

0 0...1 This bit is set when a watchdog timeout has caused
a machine check.

0 0...1 This bit is set when a bus error has caused a
machine check.

0 0...1 This bit is set when a cache error has caused a
machine check.

0 0...1 This bit is set when a virtual memory error has
caused a machine check.

0% 0 Reserved for other machine check causes.

0% 0...40 Setto exception code if Exception in event thread.

95 Set to bus error code is bus error.
0 0 Set to indicate bits 31 . .. 0 of the value of the thread 0

program counter at the initiation of a machine
check.

ROM contains a branch-immediate instruction, so the archi-
tecture description is limited to 96 bits.

Address range bytes Meaning

FFFF FFFF FFFF FFFC...FFFF 4 Reset address
FFFF FFFF FFFF

FFFF FFFF FFFF FFFO...FFFF 12 Architecture Description
FFFF FFFF FFFB Register

55

60

65

The power-on bit of the status register is set upon the
completion of a power-on reset.

The bus reset bit of the status register is set upon the
completion of a bus reset initiated by the RESET pin of the
Socket 7 interface.

The double check bit of the status register is set when a
second machine check occurs that prevents recovery from the
first machine check, or which is indicative of machine check
recovery software failure. Specifically, the occurrence of an
event exception, watchdog timeout, bus error, or meltdown
while any reset or machine check cause bit of the status
register is still set results in a double check reset.

US 9,229,713 B2

217

The meltdown bit of the status register is set when the
meltdown detector has discovered an on-chip temperature
above the threshold set by the meltdown threshold field of the
control register, which causes a reset to occur.

The event exception bit of the status register is set when an
event thread suffers an exception, which causes a machine
check. The exception code is loaded into the machine check
detail field of the status register, and the machine check pro-
gram counter is loaded with the low-order 32 bits of the
program counter and privilege level.

The watchdog timeout bit of the status register is set when
the watchdog timer register is equal to the clock cycle register,
causing a machine check.

The bus error bit of the status register is set when a bus
transaction error (bus timeout, invalid transaction code,
invalid address, parity errors) has caused a machine check.

The cache error bit of the status register is set when a cache
error, such as a cache parity error has caused a machine check.

The vm error bit of the status register is set when a virtual
memory error, such as a GTB multiple-entry selection error
has caused a machine check.

The machine check detail field of the status register is set
when a machine check has been completed. For an exception
in event thread, the value indicates the type of exception for
which the most recent machine check has been reported. For
a bus error, this field may indicate additional detail on the
cause of the bus error. For a cache error, this field may indicate
the address of the error at which the cache parity error was
detected

The machine check program counter field of the status
register is loaded with bits 31 . . . 0 of the program counter and
privilege level at which the most recent machine check has
occurred. The value in this field provides a limited diagnostic
capability for purposes of software development, or possibly
for error recovery.

Physical address

The physical address of the Status Register, byte b is:

63 32 0
| FFFF FFFF 0F00 0E0043 3 [v]
61 3

Definition

def data <= AccessPhysicalStatus(pa,op,wdata) as

case op of
R:
data < 0% || StatusRegister
W
StatusRegister < wdatag; o

endcase

enddef

Control Register
The control register is a 64-bit register with both read and
write access. It is altered only by write access to this register.

bits field name value range interpretation

63 reset 0 0...1 settoinvoke internal reset
62 MMU 0 0...1 settoenable the MMU

61 LOC parity 0 0...1 settoenable LOC parity
60 meltdown 0 0...1 settoenable meltdown

detector

10

15

25

30

35

40

45

50

55

60

65

218
-continued
bits field name value range interpretation
39...57 LOCtiming 0 0...7 adjust LOC timing 0 (1]
slow ... 7 O fast
56...55 LOCstress 0 0...3 adjust LOC stress 0 (V) normal
54...52 clocktiming O 0...7 adjust clock timing 0 (1]
slow ... 7 O fast
51...12 0 0 0 Reserved
11...8 lobal access 0% 0...15 global access
7...0 niche limit 0% 0...12 niche limit
7

The reset bit of the control register provides the ability to
reset an individual Zeus device in a system. Writing a one (1)
to this bit is equivalent to a power-on reset or a bus reset. The
duration of the reset is sufficient for the operating state
changes to have taken effect. At the completion of the reset
operation, the internal reset bit of the status register is set and
the reset bit of the control register is cleared (0).

The MMU bit of the control register provides the ability to
enable or disable the MMU features of the Zeus processor.
Writing a zero (0) to this bit disables the MMU, causing all
MMU-related exeptions to be disabled and causing all load,
store, program and gateway virtual addresses to be treated as
physical addresses. Writing a one (1) to this bit enables the
MMU and MMU-related exceptions. On a reset or machine
check, this bit is cleared (0), thus disabling the MMU.

The parity bit of the control register provides the ability to
enable or disable the cache parity feature of the Zeus proces-
sor. Writing a zero (0) to this bit disables the parity check,
causing the parity check machine check to be disabled. Writ-
ing a one (1) to this bit enables the cache parity machine
check. On areset or machine check, this bit is cleared (0), thus
disabling the cache parity check.

The meltdown bit of the control register provides the abil-
ity to enable or disable the meltdown detection feature of the
Zeus processor. Writing a zero (0) to this bit disables the
meltdown detector, causing the meltdown detected machine
check to be disabled. Writing a one (1) to this bit enables the
meltdown detector. On a reset or machine check, this bit is
cleared (0), thus disabling the meltdown detector.

The LOC timing bits of the control register provide the
ability to adjust the cache timing of the Zeus processor. Writ-
ing a zero (0) to this field sets the cache timing to its slowest
state, enhancing reliability but limiting clock rate. Writing a
seven (7) to this field sets the cache timing to its fastest state,
limiting reliability but enhancing performance. On a reset or
machine check, this field is cleared (0), thus providing opera-
tion at low clock rate. Changing this register should be per-
formed when the cache is not actively being operated.

The LOC stress bits of the control register provide the
ability to stress the LOC parameters by adjusting voltage
levels within the LOC. Writing a zero (0) to this field sets the
cache parameters to its normal state, enhancing reliability.
Writing a non-zero value (1, 2, or 3) to this field sets the cache
parameters to levels at which cache reliability is slightly
compromised. The stressed parameters are used to cause
LOC cells with marginal performance to fail during self-test,
so that redundancy can be employed to enhance reliability. On
a reset or machine check, this field is cleared (0), thus pro-
viding operation at normal parameters. Changing this register
should be performed when the cache is not actively being
operated.

The clock timing bits of the control register provide the
ability to adjust the clock timing of the Zeus processor. Writ-

US 9,229,713 B2

219

ing a zero (0) to this field sets the clock timing to its slowest
state, enhancing reliability but limiting clock rate. Writing a
seven (7) to this field sets the clock timing to its fastest state,
limiting reliability but enhancing performance. On a power
on reset, bus reset, or machine check, this field is cleared (0),
thus providing operation at low clock rate. The internal clock
rate is set to (clock timing+1)/2*(external clock rate). Chang-
ing this register should be performed along with a control
register reset.

The global access bits of the control register determine
whether a local TB miss cause an exceptions or treatment as
a global address. A single bit, selected by the privilege level
active for the access from four bit configuration register field,
“Global Access,” (GA) determines the result. If GA;, is zero
(0), the failure causes an exception, if it is one (1), the failure
causes the address to be used as a global address directly.

The niche limit bits of the control register determine which
cache lines are used for cache access, and which lines are used
for niche access. For addresses pa;, g<nl, a 7-bit address
modifier register am is inclusive-or’ed against pa,, g to
determine the cache line. The cache modifier am must be set
to (77-7es(128-nD)yleg(128-nDy for proper operation. The am
value does not appear in a register and is generated from the
nl value.

Physical address
The physical address of the Control Register, byte b is:

63 32 0
FFFF FFFF 0F00 0F0043. 5 [v]
61 3

Definition

def data <= AccessPhysicalControl(pa,op,wdata) as

case op of
R:
data < 0% || ControlRegister
W
ControlRegister <= wdatags ¢

endcase

enddef

Clock

The Zeus processor provides internal clock facilities using
three registers, a clock cycle register that increments one
every cycle, a clock event register that sets the clock bit in the
event register, and a clock watchdog register that invokes a
clock watchdog machine check. These registers are memory
mapped.

Clock Cycle

Each Zeus processor includes a clock that maintains pro-
cessor-clock-cycle accuracy. The value of the clock cycle
register is incremented on every cycle, regardless of the num-
ber of instructions executed on that cycle. The clock cycle
register is 64-bits long.

For testing purposes the clock cycle register is both read-
able and writable, though in normal operation it should be
written only at system initialization time; there is no mecha-
nism provided for adjusting the value in the clock cycle
counter without the possibility of losing cycles.

10

15

20

25

30

35

40

45

50

55

60

65

220

63 0

clock cycle

64

Clock Event

An event is asserted when the value in the clock cycle
register is equal to the value in the clock event register, which
sets the clock bit in the event register.

It is required that a sufficient number of bits be imple-
mented in the clock event register so that the comparison with
the clock cycle register overflows no more frequently than
once per second. 32 bits is sufficient for a 4 GHz clock. The
remaining unimplemented bits must be zero whenever read,
and ignored on write. Equality is checked only against bits
that are implemented in both the clock cycle and clock event
registers.

For testing purposes the clock event register is both read-
able and writable, though in normal operation it is normally
written to.

63 0

clock event

64

Clock Watchdog

A Machine Check is asserted when the value in the clock
cycle register is equal to the value in the clock watchdog
register, which sets the watchdog timeout bit in the control
register.

A Machine Check or a Reset, of any cause including a
clock watchdog, disables the clock watchdog machine check.
A write to the clock watchdog register enables the clock
watchdog machine check.

It is required that a sufficient number of bits be imple-
mented in the clock watchdog register so that the comparison
with the clock cycle register overflows no more frequently
than once per second. 32 bits is sufficient for a 4 GHz clock.
The remaining unimplemented bits must be zero whenever
read, and ignored on write. Equality is checked only against
bits that are implemented in both the clock cycle and clock
watchdog registers.

The clock watchdog register is both readable and writable,
though in normal operation it is usually and periodically
written with a sufficiently large value that the register does not
equal the value in the clock cycle register before the next time
it is written.

63 0

clock watchdog

64

Physical address

The Clock registers appear at three different locations, for
which three registers of the Clock are mapped. The Clock
Cycle counter is register 0, the Clock Event is register 2, and
Clock Watchdog is register 3. The physical address of a Clock
Register f, byte b is:

US 9,229,713 B2

221
63 10987 320
FFFF FFFF 0F00 04006;..10 [t]o]b]
54 2 5 3

Definition

def data <= AccessPhysicalClock(pa,op,wdata) as
f<Dpag g
case T[] op of
0|R:
data < 0% || ClockCycle
0|W:
ClockCycle < wdatag; o
2 |R:
data < 0% || ClockEvent
2 |W:
ClockEvent <= wdatasz; ¢
3|R:
data < 0% || ClockWatchdog
3w
ClockWatchdog < wdatas; o
Enable Watchdog < 1
endcase
enddef
def RunClock as
forever
ClockCycle <= ClockCycle + 1
if EnableWatchdog and (ClockCycles, o = ClockWatchdogs, o) then
raise ClockWatchdogMachineCheck
elseif (ClockCycley, o= ClockEventy,) then
EventRegister, <= 1
endif
wait
endforever
enddef

Tally Counter

Each processor includes two counters that can tally pro-
cessor-related events or operations. The values of the tally

counter registers are incremented on each processor clock

cycle in which specified events or operations occur. The tally
counter registers do not signal events.

It is required that a sufficient number of bits be imple-
mented so that the tally counter registers overflow no more
frequently than once per second. 32 bits is sufficient for a 4
GHz clock. The remaining unimplemented bits must be zero
whenever read, and ignored on write.

For testing purposes each of the tally counter registers are
both readable and writable, though in normal operation each
should be written only at system initialization time; there is no
mechanism provided for adjusting the value in the event
counter registers without the possibility of losing counts.

63 0

| tally counter 0 |

64

63 0

| tally counter 1 |

64

Physical address

The Tally Counter registers appear at two different loca-
tions, for which the two registers are mapped. The physical
address of a Tally Counter register f, byte b is:

222

63 1098
FFFF FFFF 0F00 080043.10 [f] o [b]
54 1 6 3

320

Tally Control
The tally counter control registers each select one metric

o for one of the tally counters.

15

20

25

30

35

50

55

65

63 1615 0

| 0 |tally counter 0 |
48 16

63 1615 0

| 0 |tally counter 1 |

48 16

Each control register is loaded with a value in one of the
following formats:

15 14 1312 8 7 6 5 4 3 2 1 0
[o] flag | thread [wlE[x][G]s[L][B]A]
1 2 5 1 1 1 1 1 1 1 1
flag meaning
0 count instructions issued
1 count instructions retired (differs by branch mispred, exceptions)
2 count cycles in which at least one instruction is issued
3 count cycles in which next instruction is waiting for issue

W E X G S L B A: include instructions of these classes

15 14 13 12 87 4 3 2 1 0
[oToJo] thread flag [s[r]w][1]
11 1 5 4 1 1 1 1
flag meaning
0 count bytes transferred cache/buffer to/from processor
1 count bytes transferred memory to/from cache/buffer
2
3
4 count cache hits
5 count cycles in which at least one cache hit occurs
6 count cache misses
7 count cycles in which at least one cache miss occurs
8...15

S L W I: include instructions of these classes (Store, Load,
Wide, Instruction fetch)

15 14
[tfoft]
1 1 1 5 2 11 11 1 1

13 12

US 9,229,713 B2

flag meaning
0 count cycles in which a new instruction is issued
1 count cycles in which an execution unit is busy
2
3 count cycles in which an instruction is waiting for issue

n select unit number for G or A unit
E X T G A: include units of these classes (Ensemble,
Crossbar, Translate, Group, Address)

15 14 13 12 11 10 9 8 7 6 5 0
[t]1]oJoJoJoJoloJo]o] event
1 1 1 1 1 1 1 1 1 1 6

event: select number from event register
15 14 13 12 11 10 9 8 7 6 5 0
[1]1]1Jofo]o]o]ololo] other |

1 1 1 1 1 1 1 1 1 1 6

Other valid values for the tally control fields are given by

the following table:
other meanin
0 count number of instructions waiting to issue each cycle
1 count number of instructions waiting in spring each cycle
2...63 Reserved
Physical address

The Tally Control registers appear at two different loca-
tions, for which the two registers are mapped. The physical
address of a Tally Control register f, byte b is:

63 1098
| FFFF FFFF 0F00 09006;..10 1] 32] b
54 1 6 3

320

Definition

def data <= AccessPhysicalTally(pa,op,wdata) as
f<pagy
case pag || op of
O|R:
data < 0% || TallyCounter[f]
0|W:
TallyCounter[f] < wdata,;
1]R:
data < 0''2 || TallyControl[f]
1[|W:
TallyControl[f]«< wdata,5
endcase
enddef

Thread Register

The Zeus processor includes a register that effectively con-
tains the current thread number that reads the register. In this
way, threads running identical code can discover their own
identity.

It is required that a sufficient number of bits be imple-
mented so that each thread receives a distinct value. Values

10

15

25

30

45

50

55

60

65

224

must be consecutive, unsigned and include a zero value. The
remaining unimplemented bits must be zero whenever read.
Writes to this register are ignored.

63 0
| thread
64

Physical address
The physical address of the Thread Register, byte b is:

63 320
| FFFF FFFF 0F00 0500433 [o]
61 3

Definition

def data <= AccessPhysical Thread(pa,op,wdata) as
case op of
R:
data < 0% Thread
W
// nothing
endcase
enddef

CONCLUSION

Having fully described a preferred embodiment of the

> invention and various alternatives, those skilled in the art will

recognize, given the teachings herein, that numerous alterna-
tives and equivalents exist which do not depart from the
invention. It is therefore intended that the invention not be
limited by the foregoing description, but only by the
appended claims.

What is claimed is:

1. A processor comprising:

a first data path having a first bit width;

a second data path having a second bit width greater than
the first bit width;

a plurality of third data paths having a combined bit width
less than the second bit width;

a wide operand storage coupled to the first data path and to
the second data path, the wide operand storage storing a
wide operand having a size with a number of bits greater
than the first bit width;

a register file including registers having the first bit width,
the register file being connected to the third data paths;

a functional unit capable of performing operations in
response to instructions, coupled by the second data path
to the wide operand storage, and coupled by the third
data paths to the register file; and

wherein the processor executes an instruction containing
instruction fields specifying (i) a control register in the
register file storing a control operand, and (ii) a results
register in the register file, the instruction causing the
functional unit to perform an operation using the control
operand and the wide operand, and place the results of
that operation in the results register.

US 9,229,713 B2

225

2. A processor as in claim 1 wherein:

the processor executes an instruction containing instruc-
tion fields further specifying (iii) an operand register in
the register file, the operand register containing vector
data; and

the instruction causes the functional unit to perform an
operation between elements contained in the wide oper-
and and elements contained in the operand register, the
elements being of a size specified by a control operand to
thereby produce a plurality of results elements from
which a value is stored in the results register.

3. A processor as in claim 2 wherein the instruction com-

prises a matrix multiplication instruction.

4. A processor as in claim 3 wherein the matrix multipli-
cation instruction specifies using floating point arithmetic.

5. A processor as in claim 3 wherein the matrix multipli-
cation instruction specifies using Galois field arithmetic.

6. A processor as in claim 3 wherein the elements are
treated as signed or unsigned based upon a field in the control
register and the plurality of results elements are of a size
sufficient to avoid an internal loss of accuracy.

7. A processor as in claim 3 in which the functional unit
also performs an extraction of the results elements under
control of the control register to produce a value which is
stored in the results register.

8. A processor as in claim 7 wherein the extraction is
further controlled by fields in the control register which
specify a shift amount from zero to the element size minus
one and specify one of a plurality of rounding operations.

9. A processor as in claim 8 wherein the results are rounded
by one of a plurality of rounding operations including round-
to-nearest, round-to-zero, round-to-negative infinity, and
round-to-positive infinity.

10. A processor as in claim 7 wherein the extraction of the
results elements is performed for each of the results elements
and catenated in the results register.

11. A processor as in claim 1 further comprising:

a memory coupled to the first data path, the wide operand
being stored in the memory before being provided to the
wide operand storage; and

wherein the address information for the wide operand
stored in the memory is stored in the register file, and the
address information includes both an address of the wide
operand in the memory and an indicia of a size of the
wide operand.

12. A processor as in claim 11 wherein the address of the
wide operand in the memory is aligned to result in a plurality
of'low order bits of the address to not be required for retrieval
of the wide operand, and those low order bits provide the
indicia of the size of the wide operand.

13. In a processor including a functional unit coupled to a
first data path having a first bit width, a second data path
having a second bit width greater than the first bit width, a
plurality of third data paths having a combined bit width less

5

10

15

20

25

30

35

40

45

226

than the second bit width, a wide operand storage storing a
wide operand, a register file including registers having the
first bit width, the register file being connected to the third
data paths, a method comprising:

executing an instruction containing instruction fields

specifying (i) a control register in the register file storing
acontrol operand, and (ii) a results register in the register
file; and

performing an operation using the control operand and the

wide operand, and placing the results of that operation in
the results register.

14. A method as in claim 13 wherein:

the instruction includes fields which further specify an

operand register in the register file; and

the step of performing an operation:

takes elements contained in the wide operand and ele-
ments contained in the operand register, the elements
being of a size specified by a control operand; and

produces a plurality of results elements from which a
value is stored in the results register.

15. A method as in claim 14 wherein the instruction com-
prises a matrix-multiply instruction and the operation multi-
plies matrix elements in the wide operand by vector data
elements in the operand register.

16. A method as in claim 14 further including the steps of:

extracting result elements of a size specified by the control

register; and

catenating the result elements to produce a value placed in

the result register.

17. A method as in claim 13 wherein the result elements are
floating point numbers.

18. A method as in claim 13 further comprising a step of
referring to a field in the control register to determine if the
result elements are to be interpreted as signed or unsigned.

19. A method as in claim 13 further comprising a step of
performing an extraction of the results elements under control
of'the control register to produce a value which is stored in the
results register.

20. A method as in claim 19 wherein the control register
further specifies a shift amount from zero to the element size
minus one and specifies one of a plurality of rounding opera-
tions.

21. A method as in claim 20 further comprising a step of
rounding the result elements by one of a plurality of rounding
operations including round-to-nearest, round-to-zero, round-
to-negative infinity, and round-to-positive infinity.

22. A method as in claim 13 wherein the processor is
coupled to a memory which stores the wide operand and the
method further comprises:

referring to a register in the register file for an address of the

wide operand in the memory; and

retrieving the wide operand from the memory and storing it

in the wide operand storage.

#* #* #* #* #*

